恒流源
宽频谱、高精度交流的稳流电源
恒流源、交流恒流源、直流恒流源、电流发生器、大电流发生器又叫电流源、稳流源,是一种宽频谱,高精度交流稳流电源,具有响应速度快,恒流精度高、能长期稳定工作,适合各种性质负载(阻性、感性、容性)等优点。主要用于检测热继电器、塑壳断路器、小型短路器及需要设定额定电流、动作电流、短路保护电流等生产场合。
结构
恒流源是电路中广泛使用的一个组件,这里是比较常见的恒流源的结构和特点。恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
最简单的恒流源
最简单的恒流源就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。
最常用的简易恒流源
用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:
这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。
为了能够精确输出电流,通常使用一个运算放大器作为反馈,同时使用场效应管避免三极管的be电流导致的误差。如果电流不需要特别精确,其中的场效应管也可以用三极管代替。
计算公式
恒流源有个定式,就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。
最简单的电压基准
最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。
电流计算公式为:。
TL431是另外一个常用的电压基准,利用TL431搭建的恒流源,其中的三极管替换为场效应管可以得到更好的精度。
TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》
电流计算公式为:。
三端稳压
事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。利用三端稳压构成恒流源,也有非常好的性价比
这种结构的恒流源,不适合太小的电流,因为这个时候,三端稳压自身的维持电流会导致较大的误差。
电流计算公式为:,其中V是三端稳压的稳压数值。
实际的电路中,有一些特殊的结构,也可以提供很好的恒流特性,最典型的就是一个很高的电压通过一个电阻在一个低压设备上形成电流,这个恒流源的精度,取决于高压的精确度和低压设备本身导致的电压波动。在一些开关电源电路中,这个结构用来给三极管提供偏置电流
电流计算公式为:
值得一提的是,以上这些恒流源并不都适合安培以上级别的恒流应用,因为电阻上面太大的电流会导致发热严重。
可以通过使用更小的电阻来降低这个热量,不过在单电源供电模式下,多数运算放大器都不能有效检测和输出接近地或者Vcc的电压,因此必须使用特殊的器件才能达到要求。有个简单的办法是通过一个稳压器件(稳压管,或者tl431等)偏置电阻上面的电压,使得这个电压进入运放的检测范围。
恒流源的实质
恒流源的实质是利用器件对电流进行反馈,动态调节设备的供电状态,从而使得电流趋于恒定。只要能够得到电流,就可以有效形成反馈,从而建立恒流源。
能够进行电流反馈的器件,还有电流互感器,或者利用霍尔元件对电流回路上某些器件的磁场进行反馈,也可以利用回路上的发光器件(例如光电耦合器发光管等)进行反馈。这些方式都能够构成有效的恒流源,而且更适合大电流等特殊场合,不过因为这些实现形式的电路都比较复杂,这里就不一一介绍了。
电路
基本概念
恒流源是输出电流保持恒定的电流源,而理想的恒流源应该具有以下特点:
a)不因负载(输出电压)变化而改变;
b)不因环境温度变化而改变;
c)内阻为无限大(以使其电流可以全部流出到外面)。
能够提供恒定电流的电路即为恒流源电路,又称为电流反射镜电路。
基本原理
基本的恒流源电路主要是由输入级和输出级构成,输入级提供参考电流,输出级输出需要的恒定电流。
①构成恒流源电路的基本原则:
恒流源电路就是要能够提供一个稳定的电流以保证其它电路稳定工作的基础。即要求恒流源电路输出恒定电流,因此作为输出级的器件应该是具有饱和输出电流的伏安特性。这可以采用工作于输出电流饱和状态的BJT 或者MOSFET来实现。
为了保证输出晶体管的电流稳定,就必须要满足两个条件:a)其输入电压要稳定——输入级需要是恒压源;b)输出晶体管的输出电阻尽量大(最好是无穷大)——输出级需要是恒流源。
②对于输入级器件的要求:
因为输入级需要是恒压源,所以可以采用具有电压饱和伏安特性的器件来作为输入级。一般的pn结二极管就具有这种特性——指数式上升的伏安特性;另外,把增强型MOSFET的源-漏极短接所构成的二极管,也具有类似的伏安特性——抛物线式上升的伏安特性。
在IC中采用二极管作为输入级器件时,一般都是利用三极管进行适当连接而成的集成二极管,因为这种二极管既能够适应IC工艺,又具有其特殊的优点。对于这些三极管,要求它具有一定的放大性能,这才能使得其对应的二极管具有较好的恒压性能。
③对于输出级器件的要求:
如果采用BJT,为了使其输出电阻增大,就需要设法减小Evarly效应(基区宽度调制效应),即要尽量提高Early电压。
如果采用MOSFET,为了使其输出电阻增大,就需要设法减小其沟道长度调制效应和衬偏效应。因此,这里一般是选用长沟道MOSFET ,而不用短沟道器件。
电路示例
上左图是用增强型n-MOSFET构成的一种基本恒流源电路。为了保证输出晶体管的栅-源电压稳定,其前面就应当设置一个恒压源。实际上,整流管在此的作用也就是为了给提供一个稳定的栅-源电压,即起着一个恒压源的作用。因此应该具有很小的交流电导和较高的跨导,以保证其具有较好的恒压性能。应该具有很大的输出交流电阻,为此就需要采用长沟道MOSFET,并且要减小沟道长度调制效应等不良影响。
上右图是用BJT构成的一种基本恒流源电路。其中是输出恒定电流的晶体管,晶体管就是一个给提供稳定基极电压的发射结整流管。当然,的电流放大系数越大、跨导越高,则其恒压性能也就越好。同时,为了输出电流恒定(即提高输出交流电阻),自然还需要尽量减小的基区宽度调变效应(即Early效应)。另外,如果采用两个基极相连接的p-n-p晶体管来构成恒流源的话,那么在IC芯片中这两个晶体管可以放置在同一个隔离区内,这将有利于减小芯片面积,但是为了获得较好的输出电流恒定的性能,即需要特别注意增大横向p-n-p晶体管的电流放大系数。
电路扩展
在以上基本电路的基础上,还可以加以扩展其功能:
一方面,在二极管恒压源()的作用下,它的后面可以连接多个输出支路(与并联的多个晶体管),从而能够获得多个稳定的输出电流。
另一方面,在和的源极(发射极)上还可以分别串联一个电阻(设分别为和),这就能够得到不同大小的恒定输出电流。因为这时可有,则在这种恒流源电路中,输出的恒定电流基本上是决定于电阻以及晶体管放大系数的比值,而与电阻和放大系数的绝对大小关系不大。这种性质正好适应了集成电路制造工艺的特点,所以这种恒流源电路是模拟IC中的一种基本电路。
有关研究
组成
恒流源电路如图1所示。图中A是高精度运算放大器,、是功率MOSFET,负载为感性。由ne555P构成脉位调制器,工作于无稳态方式,其振荡频率受⑤脚输入的信号调制。控制端⑤脚加入调制信号VΩ(该端允许外加0~EC的电压),使定时器的阈值电平Vth1和触发电平Vth2均随VΩ而变。
定时器电容的充电时间和放电时间均受调制信号VΩ的控制;③脚输出正脉冲的位置及脉冲宽度将随调制信号VΩ的变化而变化,实现脉冲的位置及宽度的双重调制。
工作原理
控制电压Vi经分压后加到运算放大器A的输入端,运放的输出信号作为ne555P的调制信号。
NE555P③脚输出的PWM信号控制,驱动、交替工作在开关状态;的工作频率和占空比等于NE555P③脚输出电压信号的频率和占空比。导通时,D处于截止状态,直流电压EC加在D的两端,经LC滤波后对负载供电;截止时,输入电压为0,D在回路电感的作用下导通,构成续流回路,D还可以削弱输出信号电压从高电平跳变到低电平时在感性负载两端产生的反电动势。RS为取样电阻。所以,控制电压经运算放大器后,控制脉位调制器输出脉冲信号的占空比,改变、的开关时间,从而控制输出电流的大小。
试验结果
为了测试恒流源的性能,笔者对其进行了实验研究。电源选用直流12V2A的高精度稳压电源,在元件选择上,A选用高精度运放,电阻选用千分之一精度的精密电阻器,取样电阻选用温度稳定性好的无感线绕电阻,实验采用的负载为感性,其电感量为180mH、静态电阻为4Ω,MOSFET的参数见MOSFET的参数。
输出电流与输入电压的关系
当,输入电压Vi从变化时,理论计算和实际测量的输出电流I0随输入电压Vi的变化关系如图2(吻合),输出电流与输入电压成线性关系
取样电阻与输出电流的关系
当,输入电压Vi为5V时,测得取样电阻与输出电流的关系如图3。取样电阻越小,输出电流越大,电阻的功耗也相应增大;反之亦然。与理论计算基本相吻合。
其他性能的测量
测得恒流源输出电流与PWM信号占空比成线性关系,占空比越大,输出电流越大;纹波电流;负载调整率。
结论
选择适当元件参数,当控制电压从变化时,该恒流源电路的输出电流I0将在范围内连续变化;电源的效率高,线性度好,具有结构简单、安全(输出电压)、稳定的优点。此恒流源可作为磁流变阻尼器的驱动电源,也可应用于其他领域。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
结构
计算公式
电路
基本概念
基本原理
电路示例
电路扩展
有关研究
组成
工作原理
试验结果
结论
参考资料