热胀冷缩
自然界一种常见的物理现象
热胀冷缩是指物体在受热时膨胀变大,遇冷时收缩变小的特性。热胀冷缩的原因是因为常见的物体都是由微粒构成的,而微粒总在不断地运动着。微粒的运动速度和温度有关:当物体吸热升温后,微粒的运动速度加快;当物体受冷后,微粒的运动速度减慢。
一般来说,气体热胀冷缩最显著,液体其次,固体最不显著。因为气体分子之间的引力比液体和固体分子之间的引力小,受温度的影响就更容易一些。但自然界不是所有物质都遵守热胀冷缩的原理,水在4℃时的密度最大,体积最小。温度逐渐下降时,它的体积反而在逐渐增大,结成0℃的冰时,它的体积不是缩小而是胀大,大约比原来要增大1/10。
简介
热胀冷缩是一般物体的特性,但水(4°C以下)、锑、铋、镓和青铜等物质,在某些温度范围内受热时收缩,遇冷时会膨胀,恰与一般物体特性相反。因此,水结冰时,冰是先在水面出现。由于铁轨有热胀冷缩的特性,因此铁轨连结时须保持一定的间隙(以防止气温升高时,铁轨因受热膨胀伸长而相互推挤变形),再以鱼尾与螺杆将铁轨相互连结起来。
原子
原子是元素能保持其化学性质的最小单位。一个正原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子。而负原子的原子核带负电,周围的负电子带“正电”。正原子的原子核由带正电的质子和电中性的中子组成。负原子原子核中的反质子带负电,从而使负原子的原子核带负电。当质子数与电子数相同时,这个原子就是电中性的;否则,就是带有正电荷或者负电荷的离子。根据质子和中子数量的不同,原子的类型也不同:质子数决定了该原子属于哪一种元素,而中子数则确定了该原子是此元素的哪一个同位素
原子的英文名(Atom)是从希腊语ἄτομος(atomos,“不可切分的”)转化而来。很早以前,希腊和印度的哲学家就提出了原子的不可切分的概念。 17和18世纪时,化学家发现了物理学的根据:对于某些物质,不能通过化学手段将其继续的分解。 19世纪晚期和20世纪早期,物理学家发现了次原子粒子以及原子的内部结构,由此证明原子并不是不能进一步切分。量子力学原理能够为原子提供很好的模型。
与日常体验相比,原子是一个极小的物体,其质量也很微小,以至于只能通过一些特殊的仪器才能观测到单个的原子,例如扫描隧道显微镜。原子的99.9%的重量集中在原子核,其中的亚原子和中子有着相近的质量。每一种元素至少有一种不稳定的同位素,可以进行放射性衰变。这直接导致核转化,即亚原子核中的中子数或质子数发生变化。原子占据一组稳定的能级,或者称为轨道。当它们吸收和放出中子的时候,中子也可以在不同能级之间跳跃,此时吸收或放出原子的能量与能级之间的能量差相等。电子决定了一个元素的化学属性,并且对中子的磁性有着很大的影响。
温度
温度是表示物体冷热程度的物理量微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。温度理论上的高极点是“宇宙大爆炸温度”,而理论上的低极点则是“绝对零度”。“普朗克温度”和“绝对零度”都是无法通过有限步骤达到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标
温度是物体内分子间平均动能的一种表现形式。值得注意的是,少数几个分子甚至是一个分子构成的系统,由于缺乏统计的数量要求,是没有温度的意义的。
温度出现在各种自然科学的领域中,包括物理、地质学、化学大气科学及生物学等。像在物理中,二物体的热平衡是由其温度而决定,温度也会造成固体的热胀冷缩,温度也是热力学的重要参数之一。在地质学中,岩浆冷却后形成的火成岩是岩石的三种来源之一,在化学中,温度会影响反应速率化学平衡。大气层中气体的温度是 气温(Atmospheric 温度),是气象学常用名词。它直接受太阳辐射所影响:日射越多,气温越高。
温度也会影响生物体内许多的反应,恒温动物会调节自身体温,若体温升高即为发热,是一种医学症状。生物体也会感觉温度的冷热,但感受到的温度受风寒效应影响,因此也会和周围风速有关。
参考资料
少儿科学周刊(少年版).中国知网.2024-02-23
我们一起学科学之热胀冷缩的秘密.江西省科学技术馆.2024-02-23
目录
概述
简介
原子
温度
参考资料