黄高,
清华大学助理教授、博士生导师。籍贯
道林镇华鑫市村,2005年毕业于
宁乡市第一高级中学,27岁获得清华大学博士学位,随后前往美国
康奈尔大学计算机系继续
博士后深造,博士后第二年他的研究《Densely Connected Convolutional Networks》就获
cvpr2017最佳论文,并被编入多本
深度学习著作,单篇引用量已经接近1.1万次。
曾获2016年全国百篇重大影响国际学术论文、2018年
世界人工智能大会Super AI Leader(SAIL)先锋奖、2019年
吴文俊人工智能优秀青年奖等多项荣誉。如今,年仅33岁的黄高已是
清华大学自动化系助理教授,博士生导师。
2020年9月9日,获得2020年阿里巴巴达摩院
青橙奖。.
教育背景
2005年9月至2009年7月
北京航空航天大学自动化学院,获
学士2009年9月至2015年7月 清华大学自动化系,获博士学位
工作履历
2015年10月至2018年8月 美国
康奈尔大学 博士后2018年12月至今 清华大学自动化系 助理教授
学术兼职
AAAI Senior Program Committee Member(2018,2020)
担任NeurIPS, ICML,CVPR, ICCV, ECCV, ICLR, AAAI等国际学术会议和JMLR, TPAMI, TIP, TNNLS等国际期刊审稿人
研究领域
研究概况
1. 基于
遥感数据的智能地物分类与目标检测方法,国家
中华人民共和国国家自然科学基金委员会,2020.01-2022.12,项目负责人
2. 基于跨媒体知识图谱的因果计算,国家科技部,2020.01-2022.12,课题骨干
3. 面向深度学习的自适应推理方法研究,
北京智源人工智能研究院,2019.06-2020.05,项目负责人
4. 基于云
仿真的复杂产品控制系统智能设计方法,北京电子工程总体研究所,2019.07-2021.06,项目负责人
5. 视觉驱动的
深度强化学习算法及其在游戏智能导航AI中的应用,
腾讯控股,2019.03-2020.03,项目负责人
奖励与荣誉
2021年 入选《麻省理工科技评论》
亚太地区“35岁以下科技创新35人”榜单
2018年
世界人工智能大会Super AI Leader(SAIL)先锋奖
2016年 全国百篇最具影响国际学术论文
2015年 清华大学优秀毕业生
学术成果
1. Shuang Li, Chi Harold Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao Huang, Jian Tang. Domain Conditioned
适应 Network, AAAI Conference on Artificial Intelligence (AAAI), 2020, New York, USA.
2. Haowei He, Gao Huang, Yang Yuan. Asymmetric Valleys: Beyond Sharp and Flat Local Minima, Neural Information Processing Systems (NeurIPS Spotlight) 2019,
温哥华, Canada.
3. Yulin Wang*, Xuran
pan*, Shiji Song, Hong Zhang, Cheng Wu, Gao Huang. Implicit Semantic
数据 Augmentation for Deep Networks, Neural Information Processing Systems (NeurIPS) 2019,
温哥华, Canada.
4. Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, Gao Huang. Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning, Neural Information Processing Systems (NeurIPS) 2019,
温哥华, Canada.
5. Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, Gao Huang. Improved Techniques for Training Adaptive Deep Networks, International Conference on Computer
异象 (ICCV) 2019,
首尔特别市, Korea.
6. Shuang Li, Chi Harold Liu, Binhui Xie, Limin Su, Zhengming Ding, Gao Huang. Joint Adversarial Domain
适应, ACM Multimedia (ACM MM) 2019, Nice, France.
7. Yan Wang*, Zihang Lai*, Gao Huang, Brian Wang, Laurens
Van der Maaten, Mark Campbell, Kilian Q. Weinberger. Anytime Stereo
意象 Depth Estimation on Mobile Devices, International Conference on Robotics and
自动化技术 (ICRA), 2019,
蒙特利尔, Canada.
8.
壮族 Liu*, Mingjie Sun*, and Tinghui, Zhou, Gao Huang, Trevor Darrell. Rethinking the value of network pruning, International Conference on Learning Representations (ICLR), 2019, New Orleans, USA.
9. Yang Fu, Yunchao Wei, Yuqian Zhou, Honghui Shi, Gao Huang, Xinchao Wang, Zhiqiang Yao, Thomas Huang, Horizontal
棱锥 Matching for Person Re-identification, AAAI Conference on Artificial Intelligence (AAAI), 2019, Hawaii USA.
10. Gao Huang*, Shichen Liu*, Laurens
Van der Maaten and Kilian Weinberger. CondenseNet: An Efficient DenseNet using Learned
基团 Convolutions. IEEE Conference on
计算机 异象 and Pattern Recognition (
cvpr), 2018, Salt Lake City, USA.
11. Yan Wang*, Lequn Wang*, Yurong You*, Xu Zou, Vincent Chen, Serena Li, Gao Huang, Bharath Hariharan, Kilian Weinberger.
资源 Aware Person Re-identification
across 倍数 Resolutions. IEEE Conference on
计算机 异象 and Pattern Recognition (
cvpr), 2018, Salt Lake City, USA.
12. Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
Van der Maaten and Kilian Weinberger. Multi-Scale Dense Convolutional Networks for
资源 Efficient
意象 Classification. International Conference on Learning Representations (ICLR Oral), 2018,
温哥华, Canada.
13.
壮族 Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan and Changshui Zhang. Learning Efficient ConvNets through Network Slimming. International Conference on
计算机 异象 (ICCV), 2017, Venice, Italy.
14. Gao Huang*,
壮族 Liu*, Laurens
Van de Maaten and Kilian Weinberger. Densely Connected Convolutional Networks. IEEE Conference on Computer Vision and Pattern Recognition (
cvpr), 2017, Hawaii, USA. Oral presentation. (Best Paper Award)
15. Gao Huang*, Yixuan Li*, Geoff Pleiss,
壮族 Liu, John E. Hopcroft and Kilian Weinberger. Snapshot Ensembles: Train 1, Get M for Free. International Conference on Learning Representations (ICLR), 2017, Toulon, France.
16. Gao Huang*, Chuan Guo*, Matt Kusner, Yu Sun, Fei Sha and Kilian Weinberger. Supervised Word Mover’s Distance. Neural Information Processing Systems (NIPS), 2016, Barcelona, Spain. Oral presentation.
17. Gao Huang*, Yu Sun*,
壮族 Liu, Daniel Sedra and Kilian Weinberger. Deep networks with stochastic depth. European Conference on
计算机 异象 (ECCV), 2016, Amsterdam, Netherlands. Spotlight. (This paper was recommended as an Oral Presentation at NIPS 2016 Deep Learning Symposium.)
18. Gao Huang, Jianwen Zhang, Shiji Song and Zheng Chen. Maximin separation probability clustering. The AAAI Conference on Artificial Intelligence (AAAI), 2015, Austin,
南阿拉巴马大学19. Yihe Wan, Shiji Song and Gao Huang. Incremental Extreme Learning Machine Based on Cascade Neural Networks. IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), 2015, Hong Kong.
20. Yanshang Gong, Shiji Song and Gao Huang.
量纲 还原 by Maximizing Pairwise Discriminations. IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC). 2015, Hong Kong.
21. Chen Qin, Shiji Song and Gao Huang. Non-linear
Neighborhood component analysis based on constructive neural networks. IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), 2014, San Diego, CA, USA.
22. Gao Huang, Shiji Song, Zhixiang Xu, Kilian Weinberger and
成姓 吴语 Transductive minimax probability machine. European Conference on Machine Learning (ECML), 2014,
Nancy, France. Oral presentation.
23. Zhixiang Xu, Gao Huang, Kilian Weinberger, Alice Zheng. Gradient Boosted Feature Selection. ACM SIGKDD International Conference on Knowledge Discovery and
数据 Mining (KDD), 2014, New York, NY, USA.
24. Zhixiang Xu, Matt Kusner, Gao Huang and Kilian Weinberger. Anytime
表征 learning. International Conference on Machine Learning (ICML), 2013, Atlanta GA, USA.
主要期刊论文
1. Yulin Wang, Rui Huang, Gao Huang*, Shiji Song, Cheng
吴语 Collaborative learning with corrupted labels, Neural Networks, 125, pp. 205-213, 2020.
2. Gao Huang,
壮族 Liu, Geoff Pleiss, Laurens
Van der Maaten and Kilian Weinberger. Convolutional Networks with Dense Connectivity, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019 (In press).
3. Shuang Li, Chi Harold Liu and Gao Huang. Deep Residual Correction Network for Partial Domain Adaptation, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019 (In Press).
4. Hangkai Hu, Shiji Song, Gao Huang. Self-Attention Based Temporary Curiosity in Reinforcement Learning Exploration, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019 (In Press).
5. Le Yang, Shiji Song, Shuang Li, Yiming Chen, Gao Huang. Graph Embedding-Base
量纲 还原 With Extreme Learning Machine, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019 (In press).
6. Benben Jiang, Zhifeng Guo, Qunxiong Zhu and Gao Huang. Dynamic minimax probability machine-based approach for fault diagnosis using pairwise discriminate analysis, IEEE Transactions on
ctrl Systems Technology, 27(2), pp. 806-813, 2019.
7. Shuang Li, Shiji Song, Gao Huang, Zhengming Ding and Cheng Wu. Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Transactions on
意象 Processing, 27(9), pp. 4260-4273, 2018.
8. Shuang Li, Shiji Song, Gao Huang,
成姓 Wu, “Cross-Domain Extreme Learning Machine for Domain Adaptation”, IEEE Transactions on Systems, Man, Cybernetics : Systems, 2018.
9. Yihe Wan, Shiji Song, Gao Huang, Shuang Li, Twin Extreme Learning Machine for Pattern Classification. Neurocomputing, 23(11): 1690-1700, 2017.
10. Shiji Song, Yanshang Gong, Yuli Zhang, Gao Huang and Guangbin Huang.
量纲 还原 by Minimum Error Minimax Probability Machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), pp. 58-69, 2016.
11. Shuang Li, Shiji Song and Gao Huang. Prediction reweighting for domain adaptation. IEEE Transactions on Neural Networks and Learning Systems, 2016.
12. Quan Zhou, Shiji Song, Gao Huang and Cheng
吴语 Efficient lasso training from a geometrical
透视 Neurocomputing 168 (11), pp. 234-239, 2015.
13. Chen Qin, Shiji Song and Gao Huang and Lei Zhu. Unsupervised
Neighborhood component analysis for clustering. Neurocomputing, 168(11), pp. 609-617, 2015.
14. Gao Huang, Tianchi Liu, Yan Yang, Zhiping Lin, Shiji Song and Cheng
吴语 Discriminative clustering via extreme learning machine, Neural Networks, 70(10), pp. 1-8, 2015.
15. Gao Huang, Guang-Bin Huang, Shiji Song and Keyou You. Trends in extreme learning machine: a review, Neural Networks, 61(2), pp. 32-48, 2015.
16. Gao Huang, Shiji Song, Jatinder Gupta and Cheng
吴语 Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44 (12), pp. 2405-2417, 2014.
17. Gao Huang, Shiji Song, Jatinder Gupta and Cheng Wu. A second order cone programming approach for semi-supervised learning. Pattern Recognition, 46(12), pp. 3548-3558, 2013.
18. Gao Huang, Shiji Song, Cheng Wu and Keyou You. Robust support
向量 regression for uncertain input and output
数据, IEEE Transactions on Neural Networks and Learning System, 23 (11), pp. 1690-1700, 2012.
19. Gao Huang, Shiji Song and Cheng
吴语 Orthogonal least squares algorithm for training cascade neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (11), pp. 2629-2637, 2012.
20. Quan Zhou, Shiji Song, Cheng Wu and Gao Huang. Kernelized LARS-LASSO for constructing radial basis function neural networks. Neural Computing and Applications, 23(7-8), pp. 1969-1976, 2013.