章文:男,学历学位:博士,
武汉大学计算机学院 副教授。
人物简介
章文:男,1981年生,博士,武汉大学计算机学院副教授,硕士生导师,武汉大学珞珈青年学者。
教育背景
2015.2-至今,University of Massachusetts Medical School, Visiting Scholar to
ZLAB2014.1-至今,武汉大学计算机学院,副教授,珞珈青年学者
2009年9月-2012年12月,武汉大学计算机学院,讲师
2007年9月-2008年8月,NUS, School of Computing, joint-training Ph.D. student
2006年9月-2009年6月,
武汉大学计算机学院, 博士研究生
2003年9月-2006年6月,
武汉大学数学与统计学院, 硕士研究生
1999年9月-2003年6月, 武汉大学数学与统计学院, 本科
研究方向:
数据挖掘,机器学习,
生物信息学,药物信息学,社交网络。
论文
近年代表性论文:
1.WenZhang, FengLiu, LongqiangLuo, JingxiaZhang, Predicting drug side effects by multi-label learning and ensemble learning.
现代生物出版集团 Bioinformatics. 2015, 16:365 (SCI, 影响因子:2.7)
2.WenZhang,HuaZou,LongqiangLuo,QianchaoLiu,WeijianWu,andWenyiXiao.Predictingpotentialsideeffectsofdrugsbyrecommendermethodsandensemblelearning.Neurocomputing,2015.(inpress,onlinefirst,SCI,影 响因子:2.01)
3.Wen Zhang, Yanqing Niu, Hua Zou, Longqiang Luo, Qianchao Liu, Weijian
吴语 Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning. PLoS One 2015 28;10(5):e0128194. Epub 2015 May 28. (SCI, 影 响因子:3.23)
4.Zou, Hua; Lin, Fu; Han, Jie; Zhang, Wen(通讯作者). GPU-Based Medical Visualization for Large Datasets, Journal of Medical Imaging and Health Informatics, Volume 5,Number 7, November 2015,
pp 1467-1473(7) (SCI, 影 响因子:0.62)
5.谢倩倩,李订芳,章文(通讯作者).基于集成学习的离子通道药物靶点预测[J].
计算机科学,2015,42(4):177-180
6.谢倩倩,李订芳,章文(通讯作者).两种基于树结构的基因选择算法。计算机科学,2015,42(7):250-253
7.Zhang,Wen;Ke,Meng.Proteinencoding:AMatlabtoolboxofrepresentingorencodingproteinsequencesasnumericalvectorsfor
生物信息学JournalofChemicalandPharmaceuticalResearch6 卷,pp2000-2007,2014/6/7(EI)
8. Wen Zhang, Yanqing Niu, Yi Xiong, Meng Ke. Prediction of conformational B cell epitopes(专 著邀请章节). “Immunoinformatics”, (Series Editor: John Walker), 2014. (专 著, Springer出版,第二版 ). Springer, pp 185-196, New York, 2014/6/27
9. Juan Liu, Wen Zhang. Databases for B cell epitopes(专著邀请章 节). An invited Chapter in the second edition of the book titled “Immunoinformatics”, under the series titled “Methods in Molecular Biology” (Series Editor: John Walker). (专 著, Springer出版,第二版) .Springer, pp 135-148, New York, 2014/6/27
10. Wen Zhang, Juan Liu, Yi Xiong, Meng Ke, and Ke Zhang. Predicting immunogenic T- cell epitopes by combining various sequence- derived features. The IEEE International Conference on
生物信息学 and Biomedicine (BIBM 2013). 18-21
迪吉多 2013, Page(s):4-9, Shanghai, China, Dec 2013. (CCF B 类会议)
11. 许逸格,张可,柯萌,谢倩倩,章文(通讯作者). 一种基于循环回归的推荐
算法 华中科技大学学报, 第41卷,第S2期,195-198页, 2013. (EI)
12. Wen Zhang, Yanqing Niu, Yi Xiong, Meng Zhao, Rongwei Yu, Juan Liu. Computational prediction of conformational B- cell epitopes from antigen primary structures by ensemble learning. PLOS One, 7(8): e43575,2012 年8月 (SCI, 影响因子: 3.23)
13. Wen Zhang, Juan Liu, Meng Zhao, Qingjiao Li. Predicting linear B- cell epitopes by using sequence- derived structural and physicochemical features. International Journal of Data Mining and
生物信息学, 6 (5): 557-569, 2012 年9月 (SCI,影响因子:0.429)
14. Yi Xiong, Juan Liu, Wen Zhang, Tao Zeng. Prediction of heme binding residues from protein sequences with integrative sequence profiles. Proteome Science(Suppl 1): S20, 2012 年6月(SCI, 影响因子:2.33)
15. Yi Xiong, X Junfeng Xia, Wen Zhang, Juan Liu. Exploiting a reduced set of weighted average features to improve prediction of
脱氧核糖核酸 binding residues from 3D Structures. PLOS One, 6:e28440, 2011年11月(SCI, 影 响因子:3.23)
16. Wen Zhang, Yi Xiong, Meng Zhao, Hua Zou, Xinghuo Ye, Juan Liu. Prediction of conformational B- cell epitopes from 3D structures by random forest with a distance- based feature.
现代生物出版集团 生物信息学, 12:341, 2011年8月(SCI, 影响因子:2.7)
17. Wen Zhang, Juan Liu, Yanqing Niu. Quantitative prediction of MHC- II binding affinity using particle swarm optimization. Artificial intelligence in medicine, 50(2): 127-132, 2010 年10月, (SCI,影响因子:1.568)
18. Wen Zhang, Juan Liu, Yanqing Niu. Quantitative prediction of MHC- II peptide binding affinity using relevance vector machine. Applied Intelligence,31(2): 180-187,2009 年9月, (SCI, 影响因子:0.893)
19. Wen Zhang, Juan Liu, Yanqing Niu,Wang Lian, Hu Xihao. A Bayesian regression approach to the prediction of MHC-II binding affinity. Computer Methods and Programs in Biomedicine, 92(1):1-7,2008 年6月, (SCI,影响因子:1.516)