夏鸾翔(
清代),字紫笙,浙江钱塘人,清朝数学家,曾任詹事府
主簿、光禄寺署正等职,晚年成为同文馆教习。他是
项名达的入室弟子,著有《洞方术图解》《致曲术》《致曲图解》和《少广凿》等作品。
夏鸾翔从小聪颖好学,善于吟诗作文,对音韵、天文、卜、星命、篆刻等,都广为涉猎,尤其精通数学,擅长绘画。是项名达的入室弟子,与
戴煦交往颇深,曾随游
广州市,结识
邹伯奇、
吴嘉善等数学家。夏鸾翔对平面几何、
三角函数及曲线,都有深入研究,在曲线方面造诣最深:“讲究曲线诸术,洞悉圆出于方之理。汇通各法,推演以尽其变。”“又于中法外独创捷术,非西人所能望其项背。”
在绘画方面,最擅长白描人物,曾为
庄仲方画《
碧血录》5卷图像,上起
秦朝蒙恬、
蒙毅,下迄明代
卢象升,共232人,绘图121幅。对历朝官制、文武冠服,考据详明,画面布局,位置疏密,匠心独运。文学上,工五言诗,所作诗歌大多是忧时感事之作,著有《春晖山房诗集》、《岭南集》等。
夏鸾翔,字紫笙,
杭州市人。以输饷议叙,得詹事府
主簿。为
项名达入室弟子。讲究曲线诸术,洞悉员出于方之理。汇通各法,推演以尽其变,撰洞方术图解二卷,自序略曰:“自杜氏术出,而求弦矢得捷径焉。顾犹烦乘除,演算终不易,思一可省乘除之法而迄未得。丁巳夏,客都门,细思连比例术者,尖堆底也。尖堆底之比例,与诸乘方之比例等。以之求连比例术,必合诸乘方积而并求之。设不得诸乘方积递差之故,方积何能并求?且并求方积而欲以加减代乘除,又必得诸较自然之数而后可,诚极难矣。既而悟曰,方积之递加,加以较也。较之递生,生於三角堆也。较加较而成积,亦较加较而成较。且诸乘方积之数与诸乘尖堆之数,数异而理同。三角堆起於三角形,故屡次增乘,皆增以三角。方积起於正方形,故累次增乘,皆增以正方。三角之较数,增一根则增一较;方积之较数,增一乘则增一较,理正同也。累次相较,较必有尽,惟其有尽,乃可入算。相连诸弦矢所以愈相较而较愈均者,正此理矣。诸较之理,皆起於天元一,而生於根差。递加根一,诸乘方根差皆一。一乘之数不变,故可省乘。若增其根差,非复单一,则乘不能省。弦矢弧背之差,或一秒,或十秒,即以一秒、十秒弧线当根差,按根递求,即可尽得诸乘方之较。以较加较,即尽得所求弦矢各数矣,岂不捷哉!爰演为求弦矢术,俾求表者得以加减代乘除。并细绎立术之义,以俟精於术数者采择。”
又撰致曲术一卷,曰平员,曰椭员,曰
抛物线,曰
双曲线,曰
摆线,曰
对数曲线,曰螺线,凡七类。类皆自定新术,参差并列,法密理精。复著致曲图解一卷,谓天为大员,天之赋物,莫不以员。顾员虽一名,形乃万类。循员一匝,而曲线生焉。西人以线所生之次数分为诸类,一次式为直线;二次式有平员、椭员、抛物线、双曲线四式;三次式有八十种;四次式有五千馀种;五次以上,难以数计矣。今但二次式四种,溯其本源,并附解诸乘方。抛物线形虽万殊,理实一贯。诸曲线式备具於员锥体,员锥者,二次曲线之母也。椭员利用聚,
抛物线利用远,
双曲线利用散,其理皆出於平员。苟会其通,则制器尚象,仰观俯察,为用无穷矣。今为一一解之,其目为诸曲线始於一点终於一点第一,诸式之心第二,准线第三,规线第四,横直二径第五,兑径亦名相属二径第六,两心差第七,法线切线第八,斜规线又名
曲率径第九,纵横线式第十,诸式互为比例第十一,八线第十二。
鸾翔
同治三年卒。因方积之较而悟求求弦矢之术,骎乎驾西人而上之,然微分所弃之
常数,犹方积之方与隅也。所求之变数,犹两廉递加之较也。其术施之曲线,无所不通,鸾翔犹待逐类立术,是则不能不让西人以独步。然西法开方,自三次式以上,皆枝枝节节为之,不及中法之一贯。鸾翔又於中法外独创捷术,非西人所能望其项背云。