磁矢势
描述磁场的物理量
描述磁场物理量,是矢量。磁场是有旋度无散度场,磁感应线总是闭合的,可表述为磁感应强度的散度恒为零,即 ∇·B=0 (1)根据矢量分析理论,可引入矢量A, B=∇×A, (2)则式(1)恒能满足。A即描述磁场的磁矢势。由于任意函数ψ的梯度的旋度恒为零,∇×∇φ0, 因此在矢势A上加上任意函数φ的梯度,有 ∇×(A+∇φ)=∇×A,
磁矢势的概念
这表明与A描述同一磁场B,或者说描述磁场B的矢势具有任意性。为了确定矢量场,须给定它的散度和旋度,因此对于矢势A还可以加上一定的限制条件。在电流稳恒的条件下,常采用库仑规范作为限制条件,使计算简化。当磁介质为均匀线性介质时,在库仑规范下,磁矢势满足 (3)
式中J为电流密度方程(3)在无界空间的特解是 (4)
式中r是观察点的矢径r是电流分布点的矢径,r是观察点到电流分布点的距离。有了A,根据式(2)则可求得一定电流分布的磁场分布。在非稳恒的一般情形,矢势A和标势嗞共同描述电磁场(见电磁势)。
物理意义
磁矢势具有明确的物理意义:磁矢势沿任意闭合曲线的环量代表穿过以该曲线为周界的任一曲面的磁通量,;磁矢势对时间导数的负值等于感应电场,;电流分布的总能量W可通过下式的体积分表示。
J.C.詹姆斯·麦克斯韦在建立电磁场理论(1864)时,认为矢势是描述电磁场的基本量,后来H.R.赫兹和O.奥利弗·赫维赛德等人则认为E和B是电磁场的基本量,而A和嗞是辅助量,即沿袭至今的经典电动力学的观点。赫兹和亥维赛等人的观点是积极的,他们在这种观点的指导下,将麦克斯韦当初的电磁场方程组改写成如今对称形式的麦克斯韦方程组。然而在近代,麦克斯韦的观点重新受到重视,它孕育着新的内容,这就是规范场。
参考资料

Warning: Invalid argument supplied for foreach() in /www/wwwroot/newbaike1.com/id.php on line 362
目录
概述
磁矢势的概念
物理意义
参考资料