液压缸是将液压能转变为
机械能的、做直线往复运动(或摆动运动)的
液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和
活塞有效面积及其两边的压差成正比;液压缸基本上由
缸筒和
缸盖、活塞和
活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。
介绍
液压缸是
液压传动系统中的执行元件,它是把液压能转换成
机械能的能量转换装 置。
液压马达实现的是连续回转运动,而液压缸实现的则是往复运动。液压缸的结构 型式有活塞缸、
柱塞缸、摆动缸三大类,活 塞缸和柱塞缸实现往复
直线运动,输出速度 和
推力,摆动缸实现往复摆动,输出
角速度(转速)和转矩。液压缸除了单个地使用 外,还可以两个或多个地组合起来或和其他 机构组合起来使用。以完成特殊的功用。液压缸结构简单,工作可靠,在
机床的 液压系统中得到了广泛的应用。
分类
液压缸的结构形式多种多样,其分类方法也有多种:按运动方式可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、
柱塞式、多级伸缩套筒式,
齿轮齿条式等;按安装形式可分为拉杆、
耳环、底脚、轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa等。
活塞式
单活塞杆液压缸只有一端有活塞杆。如图所示是一种单
活塞液压缸。其两端进出口油口A和B都可通压力油或回油,以实现双向运动,故称为双作用缸。
活塞仅能单向运动,其反方向运动需由外力来完成。但其行程一般较活塞式液压缸大。
活塞式液压缸可分为单杆式和双杆式两种结构,其固定方式由缸体固定和活塞杆固定两种,按液压力的作用情况有单作用式和双作用式。在单作用式液压缸中,压力油只供液压缸的一腔,靠液压力使缸实现单方向运动,反方向运动则靠外力(如弹簧力、自重或外部载荷等)来实现;而双作用液压缸
活塞两个方向的运动则通过两腔交替进油,靠液压力的作用来完成。
如图所示为单杆双作用活塞式液压缸示意图。它只在活塞的一侧设有
活塞杆,因而两腔的有效作用面积不同。在供油量相同时,不同腔进油,活塞的运动速度不同;在需克服的负载力相同时,不同腔进油,所需要的供油压力不同,或者说在系统压力调定后,环卫垃圾车液压缸两个方向运动所能克服的负载力不同。
柱塞式
(1)柱塞式液压缸是一种单作用式液压缸,靠液压力只能实现一个方向的运动,柱塞回程要靠其它外力或柱塞的自重;
(2)柱塞只靠缸套支承而不与缸套接触,这样缸套极易加工,故适于做长行程液压缸;
(4)柱塞重量往往较大,水平放置时 容易因自重而下垂,造成
密封件和导向单边磨损,故其垂直使用更有利。
伸缩式
伸缩式液压缸具有二级或多级
活塞,伸缩式液压缸中活塞伸出的顺序式从大到小,而空载缩回的顺序则一般是从小到大。伸缩缸可实现较长的行程,而缩回时长度较短,结构较为紧凑。此种液压缸常用于
工程机械和
农业机械上。有多个一次运动的活塞,各活塞逐次运动时,其输出速度和输出力均是变化的。
摆动式
摆动式液压缸是输出扭矩并实现往复运动的执行元件,有单叶片、双叶片、
尾旋摆动等几种形式。叶片式式:
定子块固定在缸体上,而叶片和
定子和转子连接在一起。根据进油方向,叶片将带动转子作往复摆动。螺旋摆动式又分单螺旋摆动和双螺旋两种,现在双螺旋比较常用,靠两个螺旋副降液压缸内
活塞的
直线运动转变为直线运动与自转运动的复合运动,从而实现摆动运动。
缓冲装置
在液压系统中使用液压缸驱动具有一定质量的机构,当液压缸运动至行程终点时具有较大动能,如未作减速处理,液压缸活塞与
缸盖将发生机械碰撞,产生冲击、噪声,有破坏性。为缓和及防止这种危害发生,因此可在液压回路中设置减速装置或在缸体内设缓冲装置。
缸筒加工
缸筒作为液压缸、矿用单体支柱、
液压支架、炮管等产品的主要部件,其加工质量的好坏直接影响整个产品的寿命和可靠性。缸筒加工要求高,其内表面粗糙度要求为Ra0.4~0.8\u0026um,对同轴度、耐磨性要求严格。缸筒的基本特征是深孔加工,其加工一直困扰加工人员。
采用滚压加工,由于表面层留有表面残余
压应力,有助于表面微小裂纹的封闭,阻碍
侵蚀作用的扩展。从而提高表面抗腐蚀能力,并能延缓疲劳裂纹的产生或扩大,因而提高
缸筒疲劳强度。通过滚压成型,滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了缸筒内壁的耐磨性,同时避免了因磨削引起的烧伤。滚压后,表面粗糙度值的减小,可提高配合性质。
油缸是
工程机械最主要部件,传统的加工方法是:拉削缸体——精镗缸体——磨削缸体。采用滚压方法是:拉削缸体——精镗缸体——滚压缸体,工序是3部分,但时间上对比:磨削缸体1米大概在1-2天的时间,滚压缸体1米大概在10-30分钟的时间。投入对比:磨床或磨机(几万——几百万),滚压刀(1仟——几万)。滚压后,孔表面粗糙度由幢滚前Ra3.2~6.3um减小为Ra0.4~0.8\u0026um,孔的表面硬度提高约30%,
缸筒内表面疲劳强度提高25%。油缸使用寿命若只考虑缸筒影响,提高2~3倍,镗削滚压工艺较磨削工艺效率提高3倍左右。以上数据说明,滚压工艺是高效的,能大大提高缸筒的表面质量。
油缸经过滚压后,表面没有锋利的微小刃口,长时间的运动摩擦也不会损伤密封圈或
密封件,这点在液压行业特别重要。
故障诊断
液压缸是液压系统
中将液压能转换为
机械能的执行元件。其故障可基本归纳为液压缸误动作、无力推动负载以及
活塞滑移或爬行等。由于液压缸出现故障而导致设备停机的现象屡见不鲜,因此,应重视液压缸的故障诊断与使用维护工作。
一、故障诊断及处理
1、误动作或动作失灵
原因和处理方法有以下几种:
(1)阀芯卡住或阀孔堵塞。当流量阀或方向阀阀芯卡住或阀孔堵塞时,液压缸易发生误动作或动作失灵。此时应检查油液的污染情况;检查脏物或胶质
沉淀物是否卡住阀芯或堵塞阀孔;检查
阀体的磨损情况,清洗、更换系统
过滤器,清洗油箱,更换液压介质。
(2)
活塞杆与
缸筒卡住或液压缸堵塞。此时无论如何操纵,液压缸都不动作或动作甚微。这时应检查
活塞及活塞杆密封是否太紧,是否进入脏物及胶质沉淀物:活塞杆与缸筒的轴心线是否对中,易损件和
密封件是否失效,所带负荷是否太大。
(3)液压系统控制压力太低。控制
管道中节流阻力可能过大,流量阀调节不当,控制压力不合适,压力源受到干扰。此时应检查控制压力源,保证压力调节到系统的规定值。
(4)液压系统中进入空气。主要是因为系统中有泄漏发生。此时应检查
液压油箱的液位,
液压泵吸油侧的密封件和
管接头,吸油粗
滤器是否太脏。若如此,应补充
液压油,处理密封及管接头,清洗或更换粗
滤清器。
(5)液压缸初始动作缓慢。在温度较低的情况下,液压油黏度大,流动性差,导致液压缸动作缓慢。改善方法是,更换黏温性能较好的液压油,在低温下可借助
加热器或用机器自身加热以提升启动时的油温,系统正常工作油温应保持在40℃左右。
2、工作时不能驱动负载
主要表现为
活塞杆停位不准、
推力不足、速度下降、工作不稳定等,其原因是:
(1)液压缸内部泄漏。液压缸内部泄漏包括液压缸体密封、
活塞杆与密封盖密封及活塞密封均磨损过量等引起的泄漏。
活塞杆与密封盖密封泄漏的原因是,
密封件折皱、挤压、撕裂、磨损、老化、变质、变形等,此时应更换新的密封件。
活塞密封过量磨损的主要原因是速度
调节阀调节不当,造成过高的背压以及密封件安装不当或
液压油污染。其次是装配时有异物进入及密封材料质量不好。其后果是动作缓慢、无力,严重时还会造成活塞及
缸筒的损坏,出现“拉缸”现象。处理方法是调整速度控制阀,对照安装说明应做必要的操作和改进。
(2)液压回路泄漏。包括阀及液压
管道的泄漏。检修方法是通过操纵换向阀检查并消除液压连接管路的泄漏。
(3)液压油经
安全溢流阀旁通回油箱。若溢流阀进入脏物卡住阀芯,使溢流阀常开,液压油会经溢流阀旁通直接流回油箱,导致液压缸没油进入。若负载过大,溢流阀的调节压力虽已达到最大额定值,但液压缸仍得不到连续动作所需的
推力而不动作。若调节压力较低,则因压力不足达不到仍载所需的椎力,表现为推力不够。此时应检查并调整溢流阀。
液压缸活塞滑移或爬行将使液压缸工作不稳定。主要原因如下:
(1)液压缸内部涩滞。液压缸内部零件装配不当、零件变形、磨损或形位公差超限,动作阻力过大,使液压缸活塞速度随着行程位置的不同而变化,出现滑移或爬行。原因大多是由于零件装配质量差,表面有伤痕或
烧结产生的
铁屑,使阻力增大,速度下降。例如:活塞与
活塞杆不同心或活塞杆弯曲,液压缸或活塞杆对
导轨安装位置偏移,
密封环装得过紧或过松等。解决方法是重新修理或调整,更换损伤的零件及清除铁屑。
(2)润滑不良或液压缸孔径加工超差。因为
活塞与
缸筒、导轨与活塞杆等均有相对运动,如果润滑不良或液压缸孔径超差,就会加剧磨损,使缸筒中心线直线性降低。这样,活塞在液压缸内工作时,摩擦阻力会时大时小,产生
滑移或爬行。排除办法是先修磨液压缸,再按配合要求配制活塞,修磨活塞杆,配置
导向套。
(3)
液压泵或液压缸进入空气。
空气压缩或膨胀会造成活塞滑移或爬行。排除措施是检查液压泵,设置专门的排气装置,快速操作全行程往返数次排气。
(4)
密封件质量与滑移或爬行有直接关系。O形密封圈在低压下使用时,与U形密封圈比较,由于面压较高、动静摩擦阻力之差较大,容易产生滑移或爬行;U型密封圈的面压随着压力的提高而增大,虽然密封效果也相应提高,但动静摩擦阻力之差也变大,内压增加,影响橡胶弹性,由于唇缘的接触阻力增大,密封圈将会倾翻及唇缘伸长,也容易引起
滑移或爬行,为防止其倾翻可采用支承环保持其稳定。
4.液压缸缸体内孔表面划伤的不良后果及快速修复方法
① 划伤沟槽挤出的材料屑沫会嵌入
密封件,运行时在损坏密封件工作部位的同时,可能造成新的划伤区域痕路。
② 恶化
缸筒内壁的表面粗糙度,增大
摩擦力,易产生爬行现象。
③ 加重液压缸的内泄漏,使液压缸工作效率降低。引起缸体内孔表面划伤的主要原因如下。
(1)装配液压缸时造成的伤痕
① 装配时混入异物造成伤痕液压缸在总组装前,所有零件必须充分去除毛刺并洗净,零件上带有毛刺或脏物进行安装时,由于"别劲"及零件自重,异物易嵌进缸壁表面,造成伤痕。
② 安装零件中发生的伤痕液压缸安装时,
活塞及
缸盖等零件质量大、尺寸大、
惯性大,即使有起重设备辅助安装,由于规定配合间隙都较小,无论怎样均会别劲投入,因此,活塞的端部或缸盖凸台在磕碰缸壁内表面时,极易造成伤痕。解决此问题的方法:对于数量多,上批量的小型产品,安装时采用专制装配导向工具;对重、粗、大的大、中型液压缸,只有细致、谨慎操作才能竭力避免。
③测量仪器触头造成的伤痕通常采用内径千分表测量缸体内径时,测量触头是边摩擦边插入缸体内孔壁中的,测量触头多为高硬度的耐磨
钨钢制成。一般地说,测量时造成深度不大的细长形划伤是轻微的,不影响运行精度,但如果测量杆头尺寸调节不当,测量触头硬行嵌入,会造成较为重度的伤痕。解决此问题的对策,首先是测量出调节好的测量头的长短度,此外,用一张只在测量位置上开孔的纸带,贴在缸壁内表面,即不会产生上述形状划痕。测量造成的轻微划痕,一般用旧
砂布的反面或马粪纸即可擦去。
(2)不严重的运行磨损痕迹
①
活塞滑动表面的伤痕转移活塞安装之前,其滑动表面上带有伤痕,未加处理,原封不动地进行安装,这些伤痕将反过来使缸壁内表面划伤。因此,安装前,对这些伤痕必须做充分的修整。
② 活塞滑动表面面压过大造成的
烧结现象因
活塞杆自重作用使活塞倾斜,出现别劲现象,或者由于横向载荷等的作用,使活塞滑动表面的压力上升,将引起烧结现象。在液压缸设计时必须研究它的工作条件,对于活塞和
衬套的长度以及间隙等尺寸必须加以充分注意。
③ 缸体内表面所镀硬铬层发生剥离一般认为,
电镀硬铬层发生剥离的原因如下。
a.电镀层黏结不好。电镀层黏结不好的主要原因是:电镀前,零件的除油脱脂处理不充分;零件表面
活化处理不彻底,氧化
膜层未去除掉。
b.硬辂层磨损。电镀硬铬层的磨损,多数是由于
活塞的摩擦铁粉的研磨作用造成的,中间夹有水分时,磨损更快。因金属的接触
电压造成的腐蚀,只发生在活塞接触到的部位,而且腐蚀是成点状发生的。与上述相同,中间夹有水分时,会促使腐蚀的发展。与铸件相比,铜合金的接触电位差要高,因此铜合金的腐蚀程度较严重。
c.因接触电位差形成的腐蚀。接触电位差腐蚀,对于长时间运转的液压缸来说,不易发生;对于长期停止不用的液压缸来讲是常见的故障。
④
活塞环的损坏活塞环在运行中发生破损,其碎片夹在活塞的滑动部分,造成划伤。
⑤
活塞滑动部分的材料
烧结铸造活塞,在承受大的横向载荷时将引起烧结现象。此种情况下,活塞的滑动部分应使用铜合金或者将此类材料焊接上去。
(3)缸体内有异物混入
液压缸的故障当中,最成问题的是,不好判断异物是在什么时候进到液压缸里的。有异物进入后,活塞滑动表面的外侧如装有带唇缘的
密封件,那么,工作时密封件的唇缘即可刮动异物,这对于避免划伤是有利的。但是装0形密封圈的活塞,其两端是滑动表面,异物夹在此滑动表面之间,容易形成伤痕。
异物进入缸内的途径有下列几种。
① 进入缸内的异物
a.由于保管时不注意使油口敞开着,将产生时刻接受异物的条件,这是绝对不允许的。保管时必须注入防锈油或者工作油液,并且塞好。
b.缸体安装时进入异物。进行安装操作的场所,条件不好,无意识中即可进入异物。因此安装地点周围必须整理干净,尤其是安放零件的地方一定要清扫干净,不使其存在脏物。
c.零件上有"毛刺",或擦洗不充分。
缸盖上的油口或缓冲装置内常有钻孔加工时留下的毛刺,应加以注意,在砂研去除后再行安装。
② 运行中产生的异物
a.由于缓冲
柱塞别劲而形成的摩擦铁粉或
铁屑。缓冲装置的配合间隙很小,
活塞杆上所受横向载荷很大时,可能引起
烧结现象。这些摩擦铁粉或者因烧结而产生的已脱落掉的金属碎片将留在缸内。
b.缸壁内表面的伤痕。
活塞的滑动表面压力高,引起烧结现象,于是缸体内表面发生挤裂,被挤裂的金属脱落,留在缸内,会造成伤痕。
a.清洗时不注意。管路安装好以后进行清洗时,不应通过缸体,必须在缸体的油口前边加装旁通管路。这一点很重要。否则,管路中的异物将进入缸内,一旦进入,即难以向外排除,反而变成向缸体内输送异物了。再者,清洗时要考虑安装管路操作中所进异物的取出方法。此外,对管内的腐蚀等在管路安装之前即应进行
酸洗等手续,必须完全去掉锈蚀。
b.管子加工时形成的切屑。管子在定尺加工之后,在做两端去毛刺操作时,不应有遗留。再者,在做焊接
管道操作的场地附近放置钢管,是造成焊接异物混进的原因。在焊接操作地点附近放置的管子,管口都要封住。还必须注意的是,管件材料应在无尘土的工作台上备置齐全。
c.密封带进入缸内。作为简便的密封材料,在安装和检验中经常采用聚四乙烯塑料密封带,线形、带形密封材料的缠绕方法如果不对,密封带将被切断,随着进入缸内。线带形
密封件对滑动部分的绕接不会造成什么影响,但是会引起缸的
高压止回阀动作不灵或造成缓冲
调节阀不能调到底;对回路来说,可能引起换向阀、
安全溢流阀和
减压阀的动作失灵。
传统的修复方法是将损坏的部件进行拆卸后的外协修复,或是进行刷镀或是进行表面的整体刮研,修复周期液压缸缸体划伤修复长,修复费用高。
修复工艺:
1、用氧-乙炔火焰烤划伤部位(掌握温度,避免表面
退火),将常年渗金属表面的油烤出来,烤到没有火花四溅。
2、将划伤部位用
角磨机表面处理,打磨深度1毫米以上,并沿
导轨打磨出沟槽,最好是
公母榫。划伤两端钻孔加深,改变受力情况。
4、金属修复材料涂抹到划伤表面;第一层要薄,要均匀且全部覆盖划伤面,以确保材料与金属表面最好的粘接,再将材料涂至整个修复部位后反复按压,确保材料填实并达到所需厚度,使之比导轨表面略高。
5、材料在24℃下完全达到各项性能需要24小时,为了节省时间,可以通过
卤钨灯提高温度,温度每提升11℃,
固化时间就会缩短一半,最佳固化温度70℃。
6、材料固化后,用细磨石或
油灰刀,将高出
导轨表面的材料修复平整,施工完毕。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362