周俭民,博士,
中国科学院遗传与发育生物学研究所研究员,博士生导师。国家重大科学研究计划首席科学家,国家自然科学基金创新群体学术带头人,国际植物免疫领域的领军科学家之一,
未来科学大奖获得者,
科睿唯安信息服务(北京)有限公司全球高被引学者,
中国科学院杰出科技成就奖(突出贡献者),现为中国科学院遗传与发育生物学研究所研究员。
周俭民的实验室致力于植物与微生物间相互作用机理的研究。当前的研究主要集中于拟南芥和
假单孢杆菌/黄单胞菌间互作的模式体系。主要研究兴趣为植物与病原物的相互作用的分子机理。研究方向为植物识别不同
病原菌并激发免疫反应的分子机制,并且将从分子生化功能上阐明病原菌效应因子是如何抑制植物宿主
细胞免疫反应的。
人物履历
研究概述
我们的主要研究兴趣是植物与病原微生物间相互作用的机理。植物可以感受病原菌的入侵,并且启动防卫反应成功地抵御病原菌的感染。而病原菌通过对寄主的适应,能够克服寄主的免疫反应,引发病害。
我们的工作主要以拟南芥和
假单孢杆菌间互作为模式回答如下问题:植物是怎样感受病原菌并激活先天免疫反应的?其信号传导的分子机理是什么?
病原菌的致病蛋白是如何克服植物免疫系统的?对这些问题的回答,有利于农业生产中对病害的控制。另外,因为动植物先天免疫机理的相似性和植物遗传易操作性,我们的工作还有助对动物先天免疫的认识。
研究成果
中国科学院遗传与发育生物学研究所陈宇航和周俭民研究员合作团队成功
克隆广谱抗根肿病基因,阐明其作用机制,并以中国
西汉著名将领
卫青(WeiTsing)的名字为该基因命名(英文名WTS)。这一植物抗病领域重要研究成果论文于北京时间2023年6月8日夜间在国际著名
学术期刊《细胞》(
细胞)上线发表。
2023年8月16日,周俭民荣获“2023
未来科学大奖”生命科学奖。
代表论著
部分发表文章(*通讯或共同通讯作者):
Wang W*, Qin L, Zhang W, Tang L, Zhang C, Dong X, Miao P, Shen M, Du H, Cheng H, Wang K, Zhang X, Su M, Lu H, Li C, Gao Q, Zhang X, Huang Y, Liang C, Zhou JM*, and Chen YH* (2023). WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186: 2656-2671.
Dong X*, Feng F, Li Y, Li L, Chen S, and Zhou JM* (2023). 14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases. Plant Cell 35: 2413-2428.
Wang W*, Fei Y, Wang Y, Song B, Li L, Zhang W, Cheng H, Zhang X, Chen S, and Zhou JM (2023). SHOU4/4L link cell wall
纤维素 synthesis to pattern triggered immunity. New Phytologist 238: 1620-1635.
Ma M, Li M, Zhou R, Yu J-B, Wu Y, Zhang X, Wang J, Zhou JM*, and Liang X*(2023). CPR5 positively regulates pattern‐triggered immunity via a mediator protein. J Integr Plant Biol. 00: 1-7.
Bi G*, Hu M, Fu L, Zhang X, Zuo J, Li J, Yang J*, and Zhou JM* (2022). The cytosolic
硫醇 peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nature Plants 8: 1160-1175.
Ma M, Wang W, Fei Y, Cheng, HY, Song S, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X*, Zhou JM* (2022). A surface-
捕手coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host Microbe 30: 1602-1614.
Gong Z, Qi J, Hu M, Bi G, Zhou JM*, and Han G* (2022). The origin and evolution of a plant resistosome. Plant Cell 34: 1600-1620.
Zhao Y, Shi Y, Jiang G, Wu Y, Ma M, Zhang X, Liang X*, and Zhou JM* (2022). Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. New Phytologist 234: 607-617.
Zheng X, Zhou Z, Gong Z, Hu M, Ahn Y, Zhang X, Zhao Y, Gong G, Zhang J, Zuo J, Han G-Z, Hoon S, and Zhou JM*(2022). Two plant NLR proteins confer strain-specific resistance conditioned by an effector from
假单胞菌属 syringae pv. actinidiae. J Genet Genomics 49: 823-832.
Zhao Y, Zhu X, Chen X*, and Zhou JM*(2022). From plant immunity to crop disease resistance. J Genet Genomics 49: 693-703.
Bi G and Zhou JM* (2021). Regulation of cell
死亡 and signaling by pore-forming resistosomes. Annual Review of Phytopathology 59: 239-263 (invited re
FIELD OF VIEW).
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J*, He K*, Chen YH*, and Zhou JM* (2021). The ZAR1 resistosome is a
钙permeable channel triggering plant immune signaling.
细胞 184: 3528-2541.
Zhou JM* and Zhang Y* (2020). Plant immunity: danger perception and signaling. Cell 181: 978-989 (invited review).
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X*, and Zhou JM* (2020). An Arabidopsis secondary metabolite directly targets expression of the bacterial Type III Secretion System to inhibit bacterial virulence. Cell Host Microbe 27: 601-613.
Hu M, Qi J, Bi G*, and Zhou JM* (2020). Bacterial effectors induce oligomerization of immune receptor ZAR1 in
vivo Molecular Plant 13: 793-801.
Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW*, Zhou JM*, and Chai J* (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364: eaav5868.
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW*, Zhou JM*, and Chai J* (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.
Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, Bi G, Li L, Zhang X, Chai J, Chen S, and Zhou JM* (2018). Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research 28: 529-543.
Bi G, Zhou Z,Wang W, Li L, Rao S, Zhang X, Menke FLH, She Chen S, and Zhou JM* (2018).
捕手like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of MAPK cascades in Arabidopsis. Plant Cell 30: 1543-1561.
Liang X and Zhou JM* (2018). Receptor-Like Cytoplasmic Kinases: central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69: 267-299 (invited review).
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, and Zhou JM* (2018). A regulatory module controlling homeostasis of a plant immune kinase. Molecular
细胞 69: 493-504.
Rao S, Zhou Z*, Miao P, Bi G, Hu M, Wu Y, Feng F, Zhang X, and Zhou JM* (2018). Roles of
捕手like cytoplasmic kinase VII members in Pattern-Triggered Immune signaling. Plant Physiology 177: 1679-1690.
Tang D *, Wang G, and Zhou JM* (2017). Receptor kinases in plant pathogen interactions: more than pattern recognition. Plant Cell 29: 618-637 (invited review).
Li L*, Kim P, Yu L, Cai G, Chen S, Alfano JR, and Zhou JM* (2016). Activation-dependent
Destruction of a co-receptor by a
假单胞菌属 syringae effector dampens plant immunity. Cell Host Microbe 20: 504-514.
Liang X, Ding P, Lian K, Wang J, Ma M, Li L, Li L, Li M, Zhang X, Chen S, Zhang Y*, and Zhou JM* (2016). Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife doi: 10.7554/eLife.13568.
Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, No?l LD*, and Zhou JM* (2015). The Decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18: 285-295.
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou JM* (2015). An Arabidopsis
等离子体 membrane proton ATPase modulates JA signaling and is exploited by the
假单胞菌属 syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032-2041.
Li M, Ma X, Chiang YH, Yadeta KA, Ding P, Dong D, Zhao Y, Li X, Yu Y, Zhang L, Shen QH, Xia B, Coaker G, Liu D*, and Zhou JM* (2014). Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity. Cell Host Microbe 16: 473-483.
Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, and Zhou JM* (2014). The FLS2-Associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15: 329-338.
Sun Y, Li L, Macho AP, Han Z*, Zipfel C, Zhou JM*, and Chai J* (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342: 624-628.
Liu Z, Wu Y, Yang F, Zhang Y, Chen S, Xie Q, Tian X*, and Zhou JM* (2013). BIK1 interacts with PEPRs to mediate
乙烯induced immunity. PNAS 110: 6205-6210.
Dou D and Zhou JM* (2012). Phytopathogen effectors subverting host immunity: different foes, similar
Battle Ground Cell Host Microbe 12: 484-495 (invited review).
Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J*, Zhou JM*, and Chai J* (2012). Chitin-induced dimerization activates a plant immune receptor. Science 336: 1160-1164.
Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C*, and Zhou JM* (2012). A
黄单胞菌属 uridine 5’-monophosphate transferase inhibits plant immune kinases. Nature 485: 114-118.
Xiang T, Zong N, Zhang J, Chen J, Chen M, and Zhou JM* (2011). BAK1 is not a target of the
假单胞菌属 syringae effector Avr
美国专利及商标局 MPMI 24: 100-107.
Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y , Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, and Zhou JM* (2010).
捕手like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a
假单胞菌属 syringae effector. Cell Host Microbe 7: 290-301.
Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes R, and Zhou JM* (2010). Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP KINASE 4. Cell Host Microbe 7: 164-175.
Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, and Zhou JM* (2010). A Pseudomonas syringae ADP-Ribosyltransferase inhibits Arabidopsis Mitogen-Activated Protein Kinase Kinases. Plant Cell 22: 2033-2044.
Li Y, Zhang Q, Zhang J, Wu L, Qi Y, and Zhou JM* (2010). Identification of miRNAs involved in Pathogen-Associated Molecular Pattern-triggered plant innate immunity. Plant Physiology 152: 2222-2231.
Zhang J and Zhou JM* (2010). Plant innate immunity triggered by microbial molecular signatures. Molecular Plant 5: 783-793(invited review).
Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, and Zhou JM* (2009).
乙烯 INSENSITIVE3 and ETHYLENE INSENSITIVE 3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity. Plant Cell 25: 2527-2540.
Cui H, Xiang T, and Zhou JM* (2009). Plant immunity: A lesson from pathogenic bacterial effector proteins. Cellular Microbiology 11: 1453-1461(invited review).
Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, and Zhou JM* (2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146: 368-376.
Zhou JM* and Chai J* (2008). Plant pathogenic bacterial type III effectors subdue host responses. Current Opinion in Microbiology 11: 179-185 (invited review).
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, and Zhou JM* (2008).
假单胞菌属 syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Current Biology 18: 74-80.
Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, and Zhou JM* (2007). A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity. Cell Host Microbe 1: 175-185.
Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, and Zhou JM* (2006). RAR1, a central player in plant immunity, is targeted by
假单胞菌属 syringae effector AvrB. PNAS 103: 19200-19205.
Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, and Zhou JM* (2005). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. PNAS 102: 12990-12995.
Xiao F, S. Goodwin M, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, and Zhou JM* (2004). Arabidopsis CYP86A2 represses
假单胞菌属 syringae type III genes and is required for cuticle development. EMBO J 23: 2903-2913.
He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, and Zhou JM* (2004). Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant Journal 37: 589-602.
Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He SY, and Zhou JM* (2003).
Interplay娱乐 of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. PNAS 100: 3519-3524.
He P, Friebe B, Gill BS, and Zhou JM* (2003). Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology 52: 401-414.
Thara VK, Fellers JP, and Zhou JM* (2003). In planta induced genes of Puccinia triticina. Molecular Plant
病理学 4: 51-56.
Xiao F, Lu M, Li J, Zhao T, Yi SY, Thara VK, Tang X, and Zhou JM* (2003). Pto mutants differentially activate Prf-dependent, AvrPto-independent resistance and gene-for-gene resistance. Plant Physiology 131: 1239-1249.
Xiao F, Tang X, and Zhou JM* (2001). Expression of 35S::Pto globally activates defense gene expression in tomato plants. Plant Physiology 126: 1637-1645.
Lu M, Tang X, and Zhou JM* (2001). Arabidopsis NHO1 is required for general resistance against
假单胞菌属 bacteria. Plant Cell 13: 437-447.
参考资料
周俭民简历.中国科学院遗传与发育生物学研究所.2024-08-26