闸瓦
车轮踏面上的制动部件
闸瓦,也称为制动片,是铁路运输中用于列车制动的关键部件。它安装在车轮踏面上,通过制动机的作用,在列车需要减速或停止时紧密贴合车轮,利用摩擦力将动能转化为热能,随后热能散布到大气中,实现列车减速或停止。闸瓦的性能受材质、设计和使用条件影响,关键在于摩擦热能的有效散发。
闸瓦按材质可分为生铁闸瓦和合成闸瓦两大类。铸铁闸瓦由铸铁材料制成,包括灰铸铁、中磷、高磷铁和合金铸铁等类型,具有不同的摩擦系数和耐磨性。合成闸瓦,又称非金属闸瓦,由石棉、填料和粘合剂混合热压而成,分为合成树脂基和橡胶基两类,具有重量轻、耐磨、无火花等优点。合成闸瓦的摩擦系数随速度变化小,能较好地利用粘着作用,改善制动性能和缩短停车制动距离。合成闸瓦有高摩擦系数和低摩擦系数之分。高摩擦系数合成闸瓦的摩擦系数约为铸铁闸瓦的两倍,可使用较小直径的制动缸和副风缸,减轻基础制动装置重量,节省压缩空气。低摩擦系数合成闸瓦可取代生铁闸瓦,适合改造旧车。但合成闸瓦导热性能较差,摩擦产生的热量使车轮踏面温度升高,可能导致热裂。近年来,无石棉、无铅等有害物质的合成闸瓦因环保而得到更多采用。
火车闸瓦制动原理是在制动过程中,制动装置将动能转变为热能消散于大气中,制动效果取决于摩擦热能的消散能力。闸瓦摩擦面积小,大部分热负荷由车轮承担。列车速度越高,制动时车轮的热负荷越大,可能导致踏面磨耗、裂纹或剥离,影响使用寿命和行车安全。因此,传统的踏面闸瓦制动不适应高速列车的需要。
发展
和谐型大功率内燃机车国铁集团未来客货运输主力机型,并逐步成为中国铁路的主要牵引动力。随着机车功率的提高对汽车制动系统也提出了更高的要求。高摩擦系数合成闸瓦(以下简称高摩合成闸瓦)作为大功率内燃机车制动的关键配件,其质量和使用性能对行车安全和维修成本有重要影响。CSR中车戚墅堰机车有限公司通过引进美国 通用电气技术生产的和谐型大功率内燃机车已经在国内广泛使用,但其使用的高摩合成闸瓦目前仍采用原装产品。因此,本文针对和谐型大功率内燃机车用高摩合成闸瓦的使用要求和特点,开展具有自主知识产权的和谐型大功率内燃机车高摩合成闸瓦的研制。
原材料选择
根据以往研制高摩合成闸瓦的相关经验,结合和谐型大功率内燃机车车轮对高摩合成闸瓦的使用要求,从填料、增强纤维和黏合剂三方面考虑适合用于和谐型大功率内燃机车高摩合成闸瓦的原材料。
填料
高摩合成闸瓦中的填料在压制成摩擦材料后,在各种使用情况下均应该具有耐磨的特性和高而稳定的摩擦系数。在综合分析国内各种填料材质的基础上,根据填料的温度稳定性、莫氏硬度晶粒形状以及对黏合剂的浸渍性等参数,并充分考虑填料的成本和来源,优选石墨(型号:L—185,含碳量85%)、铝矾土氧化铝含量 70%,细度150目以上)、正长石(细度100目以上,氧化钾含量大于7%)、还原铁粉(细度100目)和沉淀硫酸钡(细度100目)作为制作高摩合成闸瓦的主要填料;其中石墨作为固体润滑剂,铝矾土、钾长石粉和还原铁粉等作为摩擦性能调节剂,另外选用沉淀硫酸粉作为填料是为了提高高摩合成闸瓦的机械性能和降低成本
增强纤维
为保证高摩合成闸瓦的综合强度,在高摩合成闸瓦的材料配方中必须加入增强纤维,以起到耐热补强的作用。目前可采用的增强纤维主要有矿物纤维、高强度纤维和金属纤维三大类。参考国外公司在摩擦制品中采用多种纤维组合的经验,并充分考虑到工艺的可行性,选用钢纤维(规格:DF5.5)和海泡石纤维(A级)2种纤维组合用于对高摩合成闸瓦的耐热补强。
黏合剂
用于将填料和增强纤维黏结在一起的黏合剂是制备高摩合成闸瓦的关键材料,其性能直接影响到高摩合成闸瓦的性能。本文选用溶解度较为接近的热塑性酚醛树脂(规格:6828)和丁橡胶(规格:26)进行共混改性,从而得到相容性好、易共混并能够使填料和增强纤维互为补强的新型黏合剂———丁腈橡胶改性酚醛树脂。
制备
配方的优化
在选材的基础上,依据各种原材料的特性及其在高摩合成闸瓦中的作用,围绕高摩合成闸瓦的物理力学性能和制动摩擦磨损性能,开展黏合剂、石墨、正长石海泡石纤维、钢纤维等材料配比的研究,形成高摩合成闸瓦的配方;并通过反复实验对配方进行优化。
制备工艺
按照优化后的高摩合成闸瓦配方,经原料整备配料干燥称量分类混料热压成型后处理成品等多道工序制备高摩合成闸瓦。为了确定热压成型时合适的压制压力和压制温度,需要通过实验分析压制压力和压制温度对高摩合成闸瓦物理力学性能的影响。
压制压力对高摩合成闸瓦物理力学性能的影响为了考察热压成型工序中压制压力对高摩合成闸瓦物理力学性能的影响,按照实验方案,在压制温度为160 、压制时间为40min以及后处理温度和时间分别为160和4h的条件下,对高摩合成闸瓦的物理力学性能进行测试。
压制压力分别取 28.0,16.8和5.6MPa得到的高摩合成闸瓦各项物理力学性能指标并没有发生明显的变化,这说明压制压力对高摩合成闸瓦的物理力学性能虽有一定影响,但影响不大。因此,在高摩合成闸瓦的制备过程中,在保证高摩合成闸瓦用钢背上的梅花孔能够被摩擦材料完全充满的前提下,可以适当降低压制压力,以节约制造成本。
压制温度对高摩合成闸瓦物理性能的影响为了考察热压成型工序中压制温度对高摩合成闸瓦物理性能的影响,按照实验方案,在压制压力为16.8MPa、压制时间为40min以及后处理温度和时间分别为160和4h的条件下,分别取压制温度150,160和180 ,对高摩合成闸瓦的物理力学性能进行测试,。
压制温度对高摩合成闸瓦的物理力学性能有一定的影响。在压制温度为150和160 时对高摩合成闸瓦的物理力学性能影响较小,这是由于处理温度和时间分别为160和4h的条件下,黏合剂只发生了1次化学反应,所以压制温度为150和160时摩擦材料的固化效果一致;但当压制温度升高至180时,高摩合成闸瓦中的黏合剂又发生了第2次反应,摩擦材料的交联度进一步提高,致使高摩合成闸瓦的硬度增加、压缩强度增大、压缩模量增高,而韧性和冲击强度大幅降低,严重影响了高摩合成闸瓦的物理力学性能。
DSC分析
为了验证上述分析结果,采用差示扫描量热法DifferentialScanning CalorimetryDSC和DSC—2型差热扫描量热仪,测试黏合剂———丁腈橡胶改性酚醛树脂的热性能(自然空气环境下,升温速度为10·min)。
这说明发生了2次化学反应过程。第1个固化峰是由酚醛树脂初期固化放热并同时伴有橡胶硫化放热引起的,此阶段主要是橡胶的硫化和由于酚醛树脂中羟基之间的缩水而生成二苄基醚,形成了交联的体型分子结构,其温度变化范围为134.2~168.9 热为-38.08Jg第2个固化峰是酚醛树脂发生了更加复杂的化学反应所导致,主要是二卞基醚进一步分解并释放出少量的甲醛,使得体型分子结构收缩,体系中的弱分子键断裂,形成了更加稳定的CH2结构,此阶段的温度变化范围为171.3~238.9热焓为-18.26J·,这进一步说明在180的高温阶段存在化学反应,柔性的弱键断裂重新交联,使得材料的韧性降低,致使高摩合成闸瓦的冲击强度降低、模量增高和压缩强度增加。
压制压力和压制温度的确定
根据上述压制压力和压制温度对高摩合成闸瓦物理力学性能影响的分析,以及保证高摩合成闸瓦用钢背上的梅花孔能够被摩擦材料完全充满的要求,经反复实验,在后处理温度和时间分别为160和4h的条件下。
性能分析
为了对研制出的高摩合成闸瓦的性能进行分析,并与原装高摩合成闸瓦的性能进行比较,按照《塑料压缩性能试验方法》 (GB/T1041—1992)、《硬质塑料简支梁冲击试验方法》 (GB/T1043—1993)和《塑料洛氏硬度试验方法》 (GB/T9342—1988),利 用 冲 击 试 验 机(型 号:XCT3923)、洛氏硬度计(型号:XHR—150)、电子万能试验机(型号:CSS—1110C)、单盘电光分析天平(型号:TG279c)和1 3制动动力试验台,对研制出的高摩合成闸瓦和原装高摩合成闸瓦的物理力学性能及1 3制动摩擦磨损性能进行测所研制高摩合成闸瓦的各项物理力学性能指标均符合进口机车的技术标准,尤其是其压缩模量和洛氏硬度分别达到了460MPa和68HHR,达到了原装高摩合成闸瓦的性能,具有不易掉块和不易对车轮造成热损伤的特点,显示了优异的使用性能。
按照制动初速度由高到低、再由低到高的测试程序,对原装高摩合成闸瓦和研制的高摩合成闸瓦进行1 3制动摩擦磨损性能测试。测试中模拟的轴重为33t,制动压力为2kN。由表6可以看出,研制的高摩合成闸瓦的磨耗量虽略高于原装高摩合成闸瓦,但其摩擦系数与原装高摩合成闸瓦一样比较稳定,在测试的制动初速度范围内摩擦系数稳定在0.31~0.37之间。能够满足高摩擦合成闸瓦的技术要求。
为了进一步考察所研制高摩合成闸瓦的制动摩擦磨损性能,结合和谐型大功率内燃机车的实际运用条件,又在1 1制动动力试验台上进行了型式测试。测试中模拟的轴重为25.2t,制动压力为3.53kN;测试得到不同制动初速度下重车的制动距离、磨耗量和车轮踏面最高温度等数据。
发展展望
针对我国和谐型大功率内燃机车的运用需求,以丁腈橡胶改性酚醛树脂为黏合剂,石墨、铝矾土正长石还原铁粉沉淀硫酸钡等为填料,钢纤维海泡石纤维为增强纤维,混合构成了高摩合成闸瓦的摩擦材料;通过实验和优化得到高摩合成闸瓦的配方以及工艺参数。研制出的高摩合成闸瓦具有冲击强度高、韧性好、压缩模量低、摩擦性能稳定等特点,物理力学性能和摩擦磨损性能达到了国外原装产品的质量水平,经中国铁路哈尔滨局集团有限公司等装车试验表明,完全能够满足使用要求。
参考资料
火车闸瓦概述.www.ksalex.cn.2024-03-14
详解火车合成闸瓦是如何工作的.www.jdingkun.com.2024-03-14
目录
概述
发展
原材料选择
填料
增强纤维
黏合剂
制备
配方的优化
制备工艺
性能分析
发展展望
参考资料