质点在以某点为圆心半径为r的
圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。它是一种最常见的
曲线运动。例如电动机
定子和转子、车轮、皮带轮等都作圆周运动。圆周运动分为,匀速圆周运动和
变速圆周运动(如:竖直平面内绳/杆转动小球、竖直平面内的圆锥摆运动)。在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是
矢量,所以匀速圆周运动实际上是指匀
速率圆周运动)。
基本介绍
在物理学中,圆周运动(circularmotion)是在圆圈上转圈:一个圆形路径或轨迹。当考虑一件物体的圆周运动时,物体的体积大小会被忽略,并看成一
质点(在
空气动力学上除外)。
圆周运动的例子有:一个
人造卫星跟随其轨迹转动、用绳子连接着一块石头并打圈挥动、一架赛车在赛道上转弯、一粒
电子垂直地进入一个平均
磁场、一个
齿轮在机器中的转动(其表面和内部任一点)、皮带传动装置、火车的车轮及拐弯处轨道。
圆周运动以向心力(centripetalforce)提供运动物体所需的加速度。这向心力把运动物体拉向圆形轨迹的中心点。若果没有向心力,物体会跟随牛顿第一定律
惯性地进行
直线运动。即使物体
速率不变,圆周运动是变加速运动,物体的速度方向在不停地改变。
生活中
火车过弯道:实际做圆周运动,设计成外轨比内轨稍高,具有
向心加速度。
汽车过
拱形桥:也可看作圆周运动,桥对车的支持力为,又因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,大小
相等,所以压力大小也相等。
汽车过凹形桥:也可看作圆周运动,桥对车的支持力为,因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,所以压力大小也相等。
航天器中的
失重现象:有人把航天器失重的原因说成是它离
地球太远,从而摆脱了
地球引力,这是错误的。正是由于地球引力的存在,才使航天器连同其他的乘员有可能做环绕地球的圆周运动。这里的分析仅仅针对圆轨道而言。其实任何关闭了
发动机,又不受阻力的飞行器的内部,都是一个完全失重的环境
。例如向空中任何方向抛出的容器,其中的所有物体都处于失重状态。
离心运动:做圆周运动的物体,由于
惯性,总有沿着
切线方向飞去的倾向。但它没有飞去,这是因为向心力在“拉着”它,使它与圆心的距离保持不变。一旦受力突然消失,物体就沿切线方向飞去。除了向心力突然消失这种情况,在合力不足以提供所需的向心力时,物体虽然不会沿切线飞去,也会逐渐远离圆心,称为离心运动。
特点
匀速圆周运动的特点:轨迹是圆,
角速度,周期,
切向速度的大小(注:因为线速度是
矢量,"线速度"大小是不变的,而方向时时在变化)和
向心加速度的大小不变,且向心加速度方向总是指向圆心。
线速度定义:
质点沿圆周运动通过的
弧长ΔL与所用的时间Δt的比值叫做线速度,或者角速度与半径的乘积。
线速度的物理意义:描述质点沿圆周运动的快慢,是矢量。
角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值。
周期的定义:作匀速圆周运动的物体,转过一周所用的时间。
转速的定义:作匀速圆周运动的物体,每秒转过的弧度。
主要公式
由以上可推导出线速度v=wr
求线速度,除了可以用,也可推导出v=2πr/T(注:T为周期)=ωr=2πrn(注:n代表转速,n与T可以互相转换,公式为T=1/n),π代表
圆周率同样的,求角速度可以用ω=弧度/t=2π/T=v/r=2πn
其中S为
弧长,r指半径,V为线速度,a为加速度,T为周期,ω为角速度(单位:rad/s)。
著名理论
任何物体在作圆周运动时需要一个向心力,因为它在不断改变速度。对象的速度的
速率大小不变,但方向一直在改变。只有合适大小的向心力才能维持物体在圆轨道上运动。这个加速度(速度是一个
矢量,改变方向的同时可以不改变大小)是由向心力提供的,如果不具备这一条件,物体将脱离圆轨道。注意,
向心加速度是反映
切向速度方向改变的快慢。
物体在作
圆周运动时速度的方向相切于圆周路径。匀速圆周运动物体所受合力的方向一直指向圆心,即此来改变速度的方向。
现在,向心力可以使物体不脱离轨道。一个很好的例子是重力。地面重力给
人造卫星必要的力使其在沿轨道运动。
现在回到物理学上来。向心力与物体速度的平方及它的质量和半径
倒数成正比:
F=mv^2/r,F=mω^2r(v是线速度,ω是
角速度)
所以如果我们知道了力大小,质量,半径,我们可以算出对象旋转速度。如果我们知道了速度,质量,半径,我们可以算出力大小。符号记为如下:
F=ma
是的,合外力=质量乘以加速度,所以:
a=v^2/r=(2π)^2r/T^2
质量符号去除—用F和ma取代。因此求加速度可以不用知道物体的质量。
当一
质点在一平面做圆周运动时在另一
正交平面的
射影是做简谐运动,与弹簧振子的运动形式一样,加速度在不断变化中。
如果物体沿半径是R的
圆周作匀速圆周运动,运动一周的时间为T,则
切向速度的大小等于
角速度大小和半径R的乘积.
v=ωR,使用这一公式时应注意,角度的单位一定要用弧度,只有角速度的单位是弧度/秒时,上述公式才成立.
匀速运动
物理术语
1、定义:质点沿圆周运动,如果在任意
相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀
速率圆周运动”因为物体作圆周运动时速率不变,但速度方向随时发生变化。
2、物体作圆周运动的条件:①具有初速度;②受到一个大小不变、方向与物体运动速度方向始终垂直因而是指向圆心的力(向心力)。物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的
向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是
速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因为其加速度方向在不断改变,因为其运动轨迹是圆,所以匀速圆周运动是变加速
曲线运动。匀速圆周运动加速度方向始终指向圆心。做
变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。
匀速相关公式
1、v(
切向速度)=l/t=2πr/T=ωr=2πrf=2πnr(l代表
弧长,t代表时间,r代表半径,n为频率,ω为
角速度)
2、ω(角速度)=θ/t=2π/T=2πf(θ表示角度或者弧度)
3、T(周期)=2πr/v=2π/ω
4、f(频率)=1/T
6、Fn(向心力)=mrω²=mv²/r=mr4π²/T²=mr4π²f²
7、an(
向心加速度)=rω²=v²/r=r4π²/T²=r4π²n²
8、绳子拉球过顶点时重力充当向心力,即mg=mv²/r,因此最小速度为v=(gr)½
9、Jmax(功最大值)=Fn×πr
杆拉球时,v过顶点的最小速度为0
匀速圆周运动向心力公式的推导
设一
质点在A处的运动速度为Va,在运动很短时间⊿t后,到达B点,设此是的速度为Vb
由于受向心力的作用而获得了一个指向圆心
速度⊿v,在⊿v与Va的共同作用下而运动到B点,达到Vb的速度
则
矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va
用几何的方法可以得到Va与Vb的夹角等于OA与OB的夹角,当⊿t非常小时
⊿v/v=s/r(说明:由于质点做匀速圆周运动,所以Va=Vb=v,s表示
弧长,r表示半径)
所以⊿v=sv/r
⊿v/⊿t=s/⊿t*v/r,其中⊿v/⊿t表示
向心加速度a,s/⊿t表示
切向速度所以a=v²/r=rω²=r4π²/T²=r4π²n²
F(向心力)=ma=mv²/r=mrω²=
M4π²/T²r
将平面里的二维匀速圆周运动一维化
建立一个模型:质量为m的小球与一
劲度系数为k的弹簧(原长无限短)相连,在平面直角坐标系x-y里做
角速度为ω,半径为A的匀速
圆周动。
此时F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m
在x轴上有Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ)
同理,y轴上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ)即y=kAcos(ωt+φ)
将此推广可知小球在过原点的任何一条直线上的投影均做简谐运动。
变速运动
一般地,将作圆周运动的物体所受的合力分解为径向分力(使物体保持圆轨道运动,即向心加速度)和切向分力(使物体速度发生变化,即切向加速度)。
向心力的大小由运动物体的瞬时速度决定。
绳子末端的物体在这种情况下,受到的力量可以分为径向分力和
切线分力。径向分力可以指向中心也可以向外。