王台,
桐柏县人,
中国科学院植物研究所研究员,中科院博士研究生导师,首席研究员,分子发育生物学研究中心主任助理。
个人经历
中国科学院植物研究所研究员
河南省桐柏县人,中科院博士研究生导师,首席研究员,分子发育生物学研究中心主任助理。
研究方向及领域
研究方向:植物分子生理学,蛋白质组学
研究领域
小孢子与花粉发育的分子机制:主要兴趣是了解花粉功能特异性的分子基础与调控机制、花粉单倍体
基因组的特点以及该基因组如何调控花粉管的
极性生长。
减数分裂的分子机制:减数分裂是有性生殖的关键环节,在减数分裂过程中同源染色体的
同源重组是形成生物遗传多样性的基础。我们的工作重点是解析植物减数分裂同源染色体联会、重组与分离的机制,为植物育性的调控提供新基因与新知识。
功能蛋白质组学研究:通过功能蛋白质组学研究,揭示由单倍体花粉发育的机制、花粉与
雌蕊细胞识别与通讯的分子基础等重要的生物学问题。同时,为认识花粉过敏等与人类健康相关的一些问题奠定基础。我们也在探索利用功能蛋白质组学的技术体系解析淀粉代谢的调控等问题。
工作经历
1993年至1994年在日本
东京大学和大坂大学工作学习;
1997年在中国科学院植物研究所获博士学位;
1997年至1998年在日本原子能研究所作访问学者。
学术任职
中国科学院植物研究所首席研究员、
中国科学院大学教授、中国植物学会副秘书长、中国植物学会植物生理与分子生物学专业委员会副主任、中科院光合作用与环境分子生理学院重点实验室学术委员会委员。兼任《
植物学通报》副主编、《Journal of Integrative Plant Biology》编委。
承担项目
主持和承担
中国科学院重要方向性项目1项,“973”三级课题2项,“863”课题2项,国家转基因植物与产业化课题1项,国家自然科学基金项目3项。
主要研究
1.花粉发育分子生理机制
利用功能
蛋白质组和基因组学手段,结合细胞学、生理学等证据探讨水稻花粉
减数分裂与花粉发育的机制,揭示遗传和表观遗传调控重要的蛋白质的功能。
2.种子发育分子生理机制
利用种子突变体,通过遗传、
细胞和生理学研究探讨调控种子大小与形状的分子机制,结合功能蛋白质组分析,揭示相关的蛋白质网络。
主持和参加的科研项目:
“水稻OsUBP1蛋白的生化特性与生理功能分析”,国家自然科学基金课题(批准号:30570147)(2006.1-2008.12),25万元,主持人。
“水稻种子发育的蛋白组研究”,国家重大科学研究计划项目“重要组织和细胞的动态蛋白质组学研究”课题(批准号:2006CB910105)(2006.10-2010.12),483万元,主持人。
“水稻
内质网、
高尔基体与液泡功能
蛋白质组研究”,
中国科学院知识创新工程重要方向性项目(批准号:KSCX2-YW-N-026)(2006.10-2009.12),100万元,首席科学家。
“SAR基因的
克隆与功能分析”,水稻863重大项目子课题(批准号:2006AA10A101)(2006.12-2010.10),75万元,主持人。
“组蛋白甲基化修饰重要调控
蛋白质的蛋白质组解析”,国家重大科学研究计划项目“植物表观遗传机制与重要调控蛋白质的功能和结构研究”课题(批准号:2012CB910504)(2012.01-2015.12),350万元,主持人。
主要论文
[1] Chenshan Xu, Bingtang Chen, Shanjin Huang, Zhuyun Deng, Tai Wang. Apoint mutation in the rice alpha-tubulin gene OsTUBA3 causes grain notching. The New Phytologist[J]. 2023, 240: 1052-1065, [2] Zhuyun Deng, Yuxia Liu, Chunyan Gong, Bingtang Chen, Tai
汪姓 Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study. Journal of Experimental
植物学[J]. 2022, 73(19): 6942-6954.
[3] Song, Yunyun, Tang, Yongyan, Liu, Lingtong, Xu, Yunyuan, Wang, Tai. The
甲基CpG-binding domain family member PEM1 is essential for Ubisch body formation and pollen exine development in r
ICE PLANT JOURNAL[J]. 2022, 111(5): 1283-1295.
[4] Liu, Lingtong, Wang, Tai. Male
配子体 development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGYnull. 2021, 258.
[5] Lu, Yunlong, Song, Yunyun, Liu, Lingtong, Wang, Tai.
脱氧核糖核酸 methylation
动力学 of sperm
细胞 lineage development in
柑仔蜜 PLANT JOURNAL[J]. 2021, 105(3): 565-579.
[6] Yang, Fan, Wang, Tai, Liu, Lingtong. Pollen germination is impaired by disruption of a Shaker K+ channel OsAKT1.2 in rice. JOURNAL OF PLANT PHYSIOLOGY[J]. 2020, 248.
[7] Yu, Bo, Liu, Lingtong, Wang, Tai. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. PLANT CELL AND ENVIRONMENT[J]. 2019, 42(12): 3340-3354.
[8] Han, Bing, Yang, Ning, Pu, Hai, Wang, Tai. Quantitative Proteomics and Cytology of Rice Pollen
固醇Rich Membrane Domains Reveals Pre-established Cell
极性 Cues in Mature Pollen. JOURNAL OF PROTEOME RESEARCH[J]. 2018, 17(4): 1532-1546.
[9] Liu, Lingtong, Lu, Yunlong, Wei, Liqin, Yu, Hua, Cao, Yinghao, Li, Yan, Yang, Ning, Song, Yunyun, Liang, Chengzhi, Wang, Tai. Transcriptomics analyses reveal the molecular roadmap and long non-coding
核糖核酸 landscape of sperm
细胞 lineage development. PLANT JOURNAL[J]. 2018, 96(2): 421-437.
[10] WangTai. Protein isolation from
等离子体 membrane, digestion and processing for strong cation exchange fractionation. Bio-protocol. 2017.
[11] WangTai. Plasma membrane preparation from Lilium davidii and Oryza sativa mature and germinated pollen. Bio-protocol. 2017.
[12] Yang, Ning, Wang, Tai. Comparative proteomic analysis reveals a dynamic pollen
等离子体 membrane protein map and the membrane landscape of
捕手-like kinases and transporters important for pollen tube growth and interaction with pistils in rice.
BMC PLANT BIOLOGY[J]. 2017, 17(1).
[13] Yu, Huatao, Wang, Tai. Proteomic
Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and
氨基 Acid
新陈代谢 and Glycolysis in Rice Endosperms. FRONTIERS IN PLANT SCIENCE[J]. 2016, 7(-).
[14] Li, Qi, Deng, Zhuyun, Gong, Chunyan, Wang, Tai. The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogene
sis FRONTIERS IN PLANT SCIENCE[J]. 2016, 7(-).
[15] Liu, Lingtong, Zheng, Canhui, Kuang, Baijan, Wei, Liqin, Yan, Longfeng, Wang, Tai.
捕手Like Kinase RUPO Interacts with
钾 Transporters to Regulate Pollen Tube Growth and Integrity in Rice. PLOS GENETICS[J]. 2016, 12(7).
[16] Yang, Hao, Yang, Ning, Wang, Tai. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. PLANT JOURNAL[J]. 2016, 85(5): 660-674.
[17] Lu, Yunlong, Wei, Liqin, Wang, Tai. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from
柑仔蜜 pollen for "omics" analysis. FRONTIERS IN PLANT SCIENCE[J]. 2015, 6.
[18] Deng, Zhu Yun, Liu, Ling Tong, Li, Tang, Yan, Song, Kuang, Bai Jian, Huang, Shan Jin, Yan, Chang Jie, Wang, Tai. OsKinesin-13A Is an Active Microtubule Depolymerase Involved in Glume Length Regulation via Affecting Cell Elongation. SCIENTIFIC REPORTS[J]. 2015, 5(-).
[19] Agrawal,
迦乃士 Kumar, Job, Dominique, Kieselbach, Thomas, Barkla, Bronwyn J, Chen, Sixue, Deswal, Renu, Luethje, Sabine, Amalraj, Ramesh Sundar, Tanou, Georgia, Ndimba, Bongani Kaiser, Cramer, Rainer, Weckwerth, Wolfram, Wienkoop, Stefanie, Dunn, Michael J, Kim, Sun Tae, Fukao, Yochiro, Yonekura, Masami, Zolla, Lello, Rohila, Jai Singh, WaditeeSirisattha, Rungaroon, Masi, Antonio, Wang, Tai, Sarkar, Abhijit, Agrawal, Raj, Renaut, Jenny, Rakwal, Randeep. INPPO Actions and Recognition as a Driving Force for Progress in Plant Proteomics: Change of Guard, INPPO Update, and Upcoming Activities. PROTEOMICS[J]. 2013, 13(21): 3093-310.
[20] Deng, Zhu Yun, Gong, Chun Yan, Wang, Tai. Use of proteomics to understand seed development in rice. PROTEOMICS[J]. 2013, 13(12-13): 1784-1800.
[21] Gong, Chun Yan, Wang, Tai. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCEnull. 2013, 4.
[22] Zhao, Xin, Yang, Ning, Wang, Tai. Comparative Proteomic Analysis of Generative and Sperm Cells Reveals Molecular Characteristics Associated with Sperm Development and
函数 Specialization. JOURNAL OF PROTEOME RESEARCH[J]. 2013, 12(11): 5058-5071.
[23] Yu, Hua Tao, Xu, Sheng Bao, Zheng, Can Hui, Wang, Tai. Comparative Proteomic Study Reveals the Involvement of Diurnal Cycle in
细胞 Division, Enlargement, and Starch Accumulation in Developing Endosperm of Oryza sativa. JOURNAL OF PROTEOME RESEARCH[J]. 2012, 11(1): 359-371.
[24] Wang, Zizhang, Yan, Shijuan, Liu, Chunming, Chen, Fang, Wang, Tai. Proteomic Analysis Reveals an
黄曲霉毒素Triggered Immune Response in Cotyledons of
落花生属 hypogaea Infected with Aspergillus flavus. JOURNAL OF PROTEOME RESEARCH[J]. 2012, 11(5): 2739-2753.
[25] Gong, Chun Yan, Li, Qi, Yu, Hua Tao, Wang, Zizhang, Wang, Tai. Proteomics Insight into the Biological Safety of Transgenic Modification of Rice As Compared with Conventional Genetic Breeding and Spontaneous Genotypic Variation. JOURNAL OF PROTEOME RESEARCH[J]. 2012, 11(5): 3019-3029.
[26] Wang, Zizhang, Wang, Tai. Dynamic proteomic analysis reveals diurnal homeostasis of key pathways in rice
Leaves PROTEOMICS[J]. 2011, 11(2): 225-238.
[27] Wei, Li Qin, Yan, Long Feng, Wang, Tai. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. GENOME BIOLOGY[J]. 2011, 12(6): R53-R53.
[28] An, Xiao Jing, Deng, Zhu Yun, Wang, Tai. OsSpo11-4, a Rice
同系物 of the Archaeal TopVIA Protein, Mediates Double-Strand
脱氧核糖核酸 Cleavage and Interacts with OsTopVIB. PLOS ONE[J]. 2011, 6(5).
[29] Bing Han, Sixue Chen, Shaojun Dai, Ning Yang, Tai Wang. Isobaric Tags for Relative and Absolute Quantificationbased Comparative Proteomics Reveals the Features of
等离子体 Membrane-Associated Proteomes of Pollen Grains and Pollen Tubes from Lilium davidii. 植物学报:英文版[J]. 2010, 1043-1058.
[30] Wei, Li Q, Xu, Wen Y, Deng, Zhu Y, Su, Zhen, Xue, Yongbiao, Wang, Tai. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC GENOMICS[J]. 2010, 11(2): 338-338.
[31] Xu, Sheng Bao, Yu, Hua Tao, Yan, Long Feng, Wang, Tai. Integrated Proteomic and Cytological Study of Rice Endosperms at the Storage Phase. JOURNAL OF PROTEOME RESEARCH[J]. 2010, 9(10): 4906-4918.
[32] Zhao, Lifeng, Hu, Yibing, Chong, Kang, Wang, Tai. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. ANNALS OF
植物学[J]. 2010, 105(3): 401-409.
[33] Li, Tang, Gong, Chunyan, Wang, Tai. RA68 is required for postmeiotic pollen development in Oryza sativa. PLANT MOLECULAR BIOLOGY[J]. 2010, 72(3): 265-277.
[34] Hu, Yibing, Zhao, Lifeng, Chong, Kang, Wang, Tai. Overexpression of OsER
一级方程式锦标赛, a novel rice ERF gene, up-regulates
乙烯responsive genes expression besides affects growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY[J]. 2008, 165(16): 1717-1725.
[35] Xu, Sheng Bao, Li, Tang, Deng, Zhu Yun, Chong, Kang, Xue, Yongbiao, Wang, Tai. Dynamic proteomic analysis reveals a switch between central
碳 新陈代谢 and alcoholic
发酵 in rice filling grains. PLANT PHYSIOLOGY[J]. 2008, 148(2): 908-925.
[36] Deng, ZhuYun, Wang, Tai. OsDMC1 is required for homologous pairing in Oryza sativa. PLANT MOLECULAR BIOLOGY[J]. 2007, 65(1-2): 31-42.
[37] Jiayi Tao, Liangran Zhang, Kang Chong, Tai Wang. OsRAD21-3, an orthologue of
酵母浸膏 RAD21, is required forpollen development in Oryza sativa. THE PLANT JOURNAL[J]. 2007, 51(5): 919-930.
[38] WangTai. Proteomic identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. MOLECULAR AND CELLULAR PROTEOMICS. 2007.
[39] Dai, S, Li, L, Chen, T, Chong, K, Xue, Y, Wang, T. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. PROTEOMICS[J]. 2006, 6(8): 2504-2529.
参考资料: