流量表
测量液体流量和总量的设备
流量表又称为流量计,测量液体的瞬时流量和累计体积总量,也可以对液体进行定量控制。具有精度高寿命长操作维护简单等特点。主要应用于工业生产过程,能源计量,环境保护工程,交通运输生物技术,科学实验,海洋气象,江河湖泊等领域。
常用
电磁流量计;
转子流量计;
超声波流量计;
涡街流量计;
质量流量计。
工作原理
电磁流量计
电磁流量计的工作原理是基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于迈克尔·法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁场。当有导电介质流过时,则会产生感应电压(工作原理如下图所示)。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特隆等)实现与流体和测量电极的电磁隔离。传感器主要组成部分是:测量管、电极、励磁线圈、铁芯与磁轭壳体。它主要用于测量封闭管道中的导电液体和浆液中的体积流量。包括酸、碱、盐等强腐蚀性的液体。该产品广泛应用于石油、化工、冶金、纺织、食品、制药、造纸等行业以及环保、市政管理,水利建设等领域。
转子流量计
转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。
为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制成。
超声波流量计
超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。超声波流量计按测量原理分类有:①传播时间法;②多普勒效应法;③波束偏移法;④相关法;⑤噪声法。
涡街流量计
涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎流面的宽度d成反比,即:
式中:
f—漩涡分离频率;
Sr—斯特劳哈尔数(无量纲),对于一定柱型在一定流量范围内是雷诺数的函数;
V1—漩涡发生体两侧的流速,m/s;
d—漩涡发生体迎流宽。
涡街流量计由壳体、漩涡发生体和放大器组成。一种典型的结构如图2所示,壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号。
质量流量计
科氏质量流量计是一种用于直接测量质量流量的流量计,它在原理上消除了温度、压力流体状态、密度等参数的变化对测量精度的影响,可以适应气体、液体、两相流、高黏度流体和糊状介质的测量。一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。Rosemount质量流量计依据牛顿第二运动定律:力=质量×加速度(F=ma),当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:
(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;
(2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。
当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc:ΔFc=2ωVρAΔx(1)
式中,A-管道的流通截面积。
由于存在关系式:mq=ρVA
所以:ΔFc=2ωqmΔx(2)
因此,直接或间接测量在旋转管中流动流体的科里奥利力就可以测得质量流量。
具体分类
电磁按激磁方式分类:直流励磁;交流励磁;低频方波励磁,要产生一个均匀恒定的磁场,就需要选择一种合适的励磁方式。如按励磁电流方式划分,有直流励磁、交流(工频或其他频率)励磁、低频矩形波励磁和双频矩形波励磁。
1.直流励磁:直流励磁方式用直流电或采用永久磁铁产生一个恒定的均匀磁场。这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响。但是使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正阴离子,在电场力的作用下,负离子跑向正极,正离子跑向负极,这将导致正负电极分别被相反极性的离子所包围,严重影响仪表的正常工作。所以,直流励磁一般只用于测量非电解质液体,如液态金属流量(常温下的汞和高温下的液态钢、锂、钾)等。
2.交流励磁:工业上使用的电磁流量表,大都采用工频(50Hz)电源交流励磁方式产生交变磁场,避免了直流励磁电极表面的极化干扰。但是用交流励磁会带来一系列的电磁干扰问题(例如正交干扰、同相干扰、零点漂移等)。现在交流励磁正在被低频方波励磁所代替。
3.低频方波励磁:低频方波励磁波形有二值(正-负)和三值(正-零-负-零)两种,其频率通常为工频的1/2~1/32。低频方波励磁能避免交流磁场的正交电磁干扰,消除由分布电容引起的工频干扰,抑制交流磁场在管壁和流体内部引起的电涡流,排除直流励磁的极化现象。
流量范围
量程范围确认,一般工业用被测介质流速以2~4m/s为宜,在特殊情况下,最低流速应不小于0.2m/s,最高应不大于8m/s。若介质中含有固体颗粒,常用流速应小于3m/s,防止衬里和电极的过分磨擦;对于粘滞流体,流速可选择大于2m/s,较大的流速有助于自动消除电极上附着的粘滞物的作用,有利于提高测量精度
流量表的口径与流量范围对照表
选型表
主要优点
电磁表
1、电磁流量表的变送器结构简单,没有可动部件,也没有任何阻碍流体流动的节流部件,所以当流体通过时不会引起任何附加的压力损失,同时它不会引起诸如磨损,堵塞等问题,特别适用于测量带有固体颗粒的矿浆,污水等液固两相流体,以及各种粘性较大的浆液等.同样,由于它结构上无运动部件,故可通过附上耐腐蚀绝缘衬里和选择耐腐材料制成电极,起到很好的耐腐蚀性能,使之可用于各种腐蚀性介质的测量.
2、电磁流量表是—种体积流量测量仪表,在测量过程中,它不受被测介质的温度.粘度、密度以及电导率(在一定范围内)的影响.因此,电磁流量计只需经水标定以后,就可以用来测量其它导电性液体的流量,而不需要附加其它修正.
3、电磁流量表的量程范围极宽,同一台电磁流量计的量程比可达1:100.此外,电磁流量表只与被测介质的平均流速成正比,而与轴对称分布下的流动状态(层流或紊流)无关.
4、电磁流量表无机械惯性,反应灵敏,可以测量瞬时脉动流量,而且线性好.因此,可将测置信号直接用转换器线性地转换成标准信号输出,可就地指示,也可远距离传送。
转子计
1.适用于小管径和低流速;
2.工作可靠、维护量小、寿命长;
3.对于下游直管段要求不高;
4.有较宽的流量范围度10:1;
5.就地型指针指示接近于线性;
6.智能型指示器带有LCD液晶显示,可显示瞬时、累积流量,还可输出脉冲、输出报警;
7.带有温度补偿;
8.有就地型、远传型、夹套型、水平型、防爆型、耐腐型等。
超声波流量计
1、可做非接触式测量;
2、为无流动阻挠测量,无压力损失;
3、可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。
涡街流量计:
1、结构简单而牢固,无可动部件,可靠性高,长期运行十分可靠;
2、安装简单,维修十分方便;
3、检测传感器不直接接触介质,性能稳定,寿命长;
4、输出是与流量成正比的脉冲信号,无零点漂移,精度高,并方便和计算机联网;
5、压力损失较小,运行费用低,更具节能意义;
6、在一定的雷诺数范围内,输出信号频率不受流体物理性质和组份变化影响,仪表系数仅与漩涡发生体的形状和尺寸有关测量流体的体积流量无需补偿,调换配件后无需重新标定仪表的系数。
7、应用范围广,蒸汽,气体,液体的流量均可测量。
科氏力流量计
1、直接测量管道内流体的质量流量测量准确度高、重复性好,可较大量程比范围内,对流体质量流量实现高准确度直接测量。
2、计量的准确度高该流量计的质量流量测量准确度是0.2级;同时,它还能准确地测出流体介质的温度和密度。
3、工作稳定可靠流量计管道内部无障碍物和活动部件,因而可靠性高、寿命长、维修量小;使用方便、安全。
4、适应的流体介质面宽,除了一般粘度的均匀流体外,还可测量高粘度、非牛顿型流体;不仅可以测量单一溶液的流体参数,还可以测量混合较均匀的多相流;无论介质是层流还是紊流,都不影响其测量准确度。
主要缺点
电磁表
1、不能测量电导率很低的液体,如石油制品;
2、不能测量气体、蒸汽和含有较大气泡的液体;
3、不能用于较高温度。
转子流量计
耐压力低,有玻璃管易碎的较大风险。
超声波流量计
1、传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;
2、多普勒法测量精度不高。
涡街流量计
1、“涡街流量计”是一种速度式流量计,测量液体时,上限流速受压损和“气蚀”现象限制,一般是10米/秒。测量气体时,上限流速受介质可压缩性变化的限制,下限流速受雷诺数传感器灵敏度的限制,一般气体的流速范围10–70米/秒,蒸汽的流速范围为8–50米/秒;应力式涡街流量计对振动较大敏感,故在振动较在的管道安装涡街流量计时,管道要有一定的减震措施;应力式涡街流量计采用压电晶体作为检测传感器,故其受温度的限制,一般长期工作温度为-40℃+350℃和-10℃+250℃;
2、易受外界工频50Hz或电磁场干扰。
科氏力流量计
1、不能用于测量密度太低的流体介质,如低压气体;液体中含气量超过某一值时会显著地影响测量值,到目前为止还没有用CMF成功地测量气液二相流的实际例子。
2、对外界振动干扰较敏感,为防止管道振动的影响,大多数CMF的流量传感器对安装固定有较高要求。
3、测量管内壁磨损腐蚀或沉积结垢会影响测量精度,尤其对薄壁测量管的CMF更为显著。
4、大部分型号的CMF有较大的体积和重量。压力损失也较大。
5、价格昂贵,约为同n-径电磁流量计的2一5倍或更高。10.1.3古斯塔夫·科里奥利质且流f计的应用尽管CMF有许多极为可贵的优点,从测量原理上看也己比较完善,但由于这种流量计真正得到商用化的时间较短,在应用中目前还存在一些问题和不足之处。近年来,虽然有些问题经各制造厂家的不断努力,已获得一定程度的解决,但还有许多问题目前还没法从根本上解决,甚至人们对有些问题的认识还不够。
参考资料
目录
概述
常用
工作原理
电磁流量计
转子流量计
超声波流量计
涡街流量计
质量流量计
具体分类
流量范围
选型表
主要优点
电磁表
转子计
超声波流量计
科氏力流量计
主要缺点
电磁表
转子流量计
超声波流量计
涡街流量计
科氏力流量计
参考资料