凸函数
数学函数的特征之一
凸函数,是数学函数的一类特征。凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。设f(x)在[a,b]上连续,若对[a,b]中任意两点x1,x2,恒有 f[(x1+x2)/2]\u003e=[f(x1)+f(x2)]/2则称 f(x) 在[a,b] 上是向上凸的,简称上凸.f(x)是[a,b]上的凸函数。
基本简介
注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex 函数在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。
另外,也有些教材会把凸定义为上凸,凹定义为下凸。碰到的时候应该以教材中的那些定义为准。
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量有。
于是容易得出对于任意(0,1)中有理数,有
。如果f连续,那么可以改成任意(0,1)中实数
若这里凸集C即某个区间I,那么就是:设f为定义在区间I上的函数,若对I上的任意两点和任意的实数,总有
则f称为I上的凸函数,当且仅当其上境图(在函数图像上方的点集)为一个凸集
判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上非负,就称为凸函数。(向下凸)如果其二阶导数在区间上恒大于0,就称为严格凸函数。
属性
性质
定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。
一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。
一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有。特别地,如果,那么c是的最小值。
一元二阶可微的函数在区间上是凸的,当且仅当它的二阶导数是非负的;这可以用来判断某个函数是不是凸函数。如果它的二阶导数是正数,那么函数就是严格凸的,但反过来不成立。例如,的二阶导数是,当时为零,但是严格凸的。
更一般地,多元二次可微的连续函数凸集上是凸的,当且仅当它的黑塞矩阵在凸集的内部是正定的。
凸函数的任何极小值也是最小值。严格凸函数最多有一个最小值。
对于凸函数f,水平子集是凸集。然而,水平子集是凸集的函数不一定是凸函数;这样的函数称为拟凸函数。
延森不等式对于每一个凸函数f都成立。如果X是一个随机变量,在f的定义域内取值,那么(在这里,E表示数学期望。)
凸函数还有一个重要的性质:对于凸函数来说,局部最小值就是全局最小值。
定义
定义1设在区间I上有定义,f(x)在区间I称为是凸函数当且仅当:,有上式中则是严格凸函数的定义.
定义2设在区间I上有定义,在区间I称为是凸函数当且仅当:
定义3设f(x)在区间I上有定义,f(x)在区间I称为是凸函数当且仅当:,有
定义4在区间I上有定义,当且仅当曲线的切线恒保持在曲线以下,则成为凸函数。若除切点之外,切线严格保持在曲线下方,则称曲线为严格凸的.
引理1定义2与定义3等价.
引理2若连续,则定义1,2,3等价.
参考资料
目录
概述
基本简介
属性
性质
定义
参考资料