人造肌肉的研究始于20世纪40年代,但在过去的十多年中取得了显著进展,这主要归功于新型特殊聚合体材料和智能材料的出现。这些新材料具有独特的特性,可根据电流变化呈现多种状态,如弯曲、延伸、扭动和收缩,其行为与真实肌肉纤维极为相似。人造肌肉的研发不仅在医学上有重要意义,对于机器人技术的发展同样至关重要。
历史背景
人造肌肉的研究始于20世纪40年代,但直到最近十几年才取得实质性进展。这是因为新型特殊聚合体材料和智能材料的出现,为人造肌肉的研究提供了新的机遇。这些新材料具有独特的能力,可以根据电流变化呈现出复杂的形态,如弯曲、延伸、扭动和收缩,其行为与真实的肌肉纤维非常相似。人造肌肉的研发不仅在医学上有重要价值,对于机器人技术的发展也同样至关重要。
形态结构
人造肌肉,又称电活性聚合物,是一种新型智能高分子材料。这种材料能够在外加
电场的作用下,通过内部结构的变化而伸缩、弯曲、束紧或膨胀,与生物肌肉的特性高度相似。在医学上,人造器官是指能够植入人体或与生物组织或生物
流体接触的材料,这些材料具有天然器官组织或天然器官部件的功能。根据制造器官所使用的材料及其功能,人造器官可分为机械性人造器官、半机械性半生物性人造器官和生物性人造器官。其中,生物性人造器官是最适合移植的类型,因为它不会引起患者的免疫排斥反应。
人造肌肉状材料是根据生物学原理,由三种氨基酸(
缬氨酸、
L-脯氨酸和
甘氨酸)按一定顺序排列而成,其形态类似于人类的肌肉纤维,具有弹性,并能随环境温度和化学成分(如pH值)的变化而伸缩。由于它能够模拟活体的生物过程,因此被称为生物聚合物。
技术原理
亚利桑那州立大学的研究员西宫川认为,人类的肌肉是四肢活动的动力源,只有生产出超级的人造肌肉和装置,才能让残障人士的假肢恢复正常的功能。这种新技术有望治疗神经肌肉型疾病
帕金森病氏症。科学家们利用生物仿生学,通过对蟾蜍和
避役的肌肉研究,打造出这种神奇的“生物马达”。
科学家发现,一个蟾蜍的下巴肌肉能够产生大于其体重700倍的力量,而变色龙
捕食时,舌头
肌肉收缩时产生的力量也非常惊人。相比之下,人类制造的最好的机械设备(动力马达)只能产生
黑眶蟾蜍下巴肌肉三分之一的力量。科学家们通过对
蟾蜍和变色龙的解剖寻找相关信息,认为蟾蜍下巴的特殊构造是其肌肉产生强大动力的原因之一,这种构造可以在短时间内储存力量,适应肌肉所产生的
张力,在蟾蜍大脑的指挥下实现肌肉的快速收缩。
亚利桑那州立大学的科学家们从蟾蜍的肌肉构造中获得灵感,设计出了一种“机器肌腱”,这种装置可以模仿蟾蜍的下巴肌肉快速收缩,产生巨大的能量。这种机器肌腱就是“生物马达”,也就是人造肌肉。再配合特有的高端协调辅助设备,可以使假肢等设备与人的大脑信号协调一致,从而提升假肢的运动功能,实现残疾人的正常生活。科学家们认为,这种模仿蟾蜍制造出的人造肌肉最关键的组成部分是高端协调辅助设备,只有通过大脑的操作实现功能才是生物马达的核心部分,这部分仍需进一步研究探索。科学家表示,这种“生物马达”人造肌肉将促进神经肌肉学的研究和发展,有助于拓展对人类神经肌肉学的研究,将生物仿生学与生物动力学有机结合,这种神奇的“生物马达”可谓神来之笔,不仅能帮助残疾人的生活,还推动了科学家对生物仿生技术的发展。
科学家对人造肌肉的研究已经进行了几十年,人造肌肉所用的材料种类众多,包括塑料、类似橡胶的聚合物、凝胶以及金属。然而,这些材料制成的人造肌肉面临着许多问题,如需要消耗大量能量且可能经常失效,无法像真正的肌肉那样自我修复。
研究进展
全球有三个研究中心参与人造肌肉的研究,其中两个位于美国,一个在
瑞士。即将在美国举行的一项掰手腕比赛,将检验这些中心的
产品性能,而人类的手臂也将接受考验。
多年前,构建致动器或致动设备的工程师已经为肌肉找到了一种人造替代品。作为一种对神经刺激的响应,肌肉只需要改变长度即可精确控制其所施加的力量,例如眨眼或举起杠铃。同时,肌肉还显示出比例恒定的特性:无论大小,其机制都相同,相同的肌肉组织既能赋予昆虫力量,又能赋予
大象力量。因此,对于难以制作电动马达的驱动设备,某种类似肌肉的东西可能是有用的。
EPAs被誉为未来的人造肌肉。研究人员已经在雄心勃勃地工作,希望能够为许多当代的技术寻找基于
美国国家环境保护局的可选方案,并且不惧怕将他们的发明物与自然物竞争。几年前,有几个人,包括来自
加利福尼亚州帕萨迪纳喷气推进实验室(JPL)的高级科学家Yoseph Bar-Cohen,向电活化聚合物研究团体发起了挑战,以激发人们对该领域的兴趣:开展一场竞赛,看谁能首先制造出EAP驱动的机器人手臂,并且必须在与人类手臂的一对一掰手腕比赛中获胜。随后,他们开始寻找赞助商的资金支持,为优胜者颁发现金奖励。
最具前景的工作可能是美国斯坦福研究院(SRI International)正在进行的研究,SRI是一家总部设在
加利福尼亚州门洛帕克市的非营利性合同研究实验室。SRI管理层希望能够在几个月内筹集到400-600万美元的初始投资,成立一家让产易股的公司(暂定名人造肌肉综合公司),以实现其专利EPA技术的商业化。SRI手中仍有六份研发合同,委托方包括美国政府以及来自玩具、汽车、电子、机械产品和鞋类行业的公司。SRI正在努力,争取尽快将人造肌肉推向市场。
2008年3月25日,
加州大学洛杉矶分校的研究人员制造出了一种人造肌肉,它能够自我愈合,还能储存电能为诸如iPod之类的移动设备充电。负责该项目的加州大学洛杉矶分校研究人员佩·齐平(Qibing Pei)表示:“我们已经成功研制出了人造肌肉。如果你给它充电,它能够膨胀两倍以上,而且它的运动和能量供应状况与真正的肌肉非常相似。”
2008年4月25日,《每日科学网》报道称,美国科学家利用生物仿生学成功研制出一种最新的有“生物马达”之称的人造肌肉和装置,这种“生物马达”将极大提高残疾人假肢的活动功能,有助于医学治疗神经肌肉型疾病,例如帕金森氏症。
2012年11月,一种拥有广泛用途的革命性超强壮人造肌肉问世,其由
石蜡填充的
碳纳米管纤维制造而成,可驱动超过自身体重10万倍的重物,并提供超过天然骨骼肌85倍以上的机械功率。
2014年2月21日,最新研究表明,那些渔民们用来捕鱼的最普通的尼龙丝可以成为强大的人造肌肉的制作材料,并且可以制作一种“智能”服装,这种“智能”服装能够根据天气的变化来进行温度调节。
技术特点
人造肌肉的活动自由度更高,工作时间更长。
美国国防部高级计划研究署一直致力于研发一种能像人类一样自由活动、且自身能够供应能量的新型装置,这就是超级仿生肌肉的模型。据研究人员介绍,这种仿生肌肉的最大优势就是能量由燃料供应,以克服电池功能的诸多不足。仿生肌肉可以自由活动,而且能工作更长时间,不会因电池寿命有限而停止运作,也不必时刻依赖电源。
按照研究人员的设想,仿生肌肉研制成功后,将能完成人类和机器人各自无法单独完成的任务。它能像人类一样四处活动,能像自然手臂一样灵活运用,还能“绑”在“外骨骼”上,使消防员、士兵和宇航员等特殊职业的人拥有超人般的力气。有了它,也许消防员就可以徒手撑起坍塌的建筑物,而战场上的士兵也可以变成不知疲倦的“超人”。
人造肌肉的力量比普通人肌肉强百倍。为了实现这些功能,美韩两国科学家联合开发了两种仿生肌肉,以适应不同需求。一种是将化学能转化为电能。它用含有催化剂的
碳纳米管弯曲搭建出肌肉块、“燃料
细胞”电极和超级
电容器电极,它们会在充满氢的环境中,源源不断产生电源。另一种是将化学能转化为
热能。它利用氢和
乙醇反应提供能量,配合特制的记忆
金属丝。例如,当温度下降时,金属丝就会收缩,催化剂减少作用,人造肌肉就会松弛。这种方法打造出来的人造肌肉力量最大,举力是正常骨骼肌肉的100倍以上。
人造肌肉具有循环系统和神经。
加拿大学者指出:“事实上,人造肌肉已经成功复制出了许多生物特性。比如说,它有循环系统,氧和燃料可以通过循环系统输送,为肌肉本身提供化学反应的场所,然后做出机械动作;它还有神经,由特殊电路组成,能够做出反应并控制自己的行为;它还能存储能量,并像人类的肌肉一样,直接对接触做出判断反应。”
具体用途
人造肌肉的伸缩性已经达到与人类肌肉相媲美的水平,材料自身性能决定了它无需马达、
齿轮等复杂装置,体积小、重量轻。研究人员称研发的两种人造肌肉性能均非常突出,同时具备燃料电池和肌肉的功能。其中一种采用了含催化剂的
碳纳米管电极,可作为燃料电池的电极将化学能转化为电能,以及超级电容器的电极来储存电能,还可作肌肉电极将电能再转化为机械能。另一种是目前最强健的肌肉,是通过混合燃料和空气中
氧气发生
催化反应,将化学能转化为
热能,升高的温度可使制造肌肉的具有形状记忆功能的金属材料用力收缩,冷却后肌肉松弛。由于这种燃料电池肌肉所使用的外层涂有纳米颗粒催化剂的形状记忆金属在市场上可以买到,这使得它特别易于在自动化装置中得到应用。
这次新研制成功的人造肌肉则解决了这些问题。研究人员使用更具弹性的且已被广泛应用的
碳纳米管(
碳 nanotubes)取代其它金属薄膜来充当电极,这样就避免了因重复使用导致金属膜失效而出现的供电问题。另外,如果碳纳米管某一部分出现问题,它周围剩下的区域就会将其自我封闭起来,使其不会导电,这样就防止了损坏影响到其它区域。
更神奇的是,这种能自我修复的人造肌肉还能发电和储存电能。当此人造肌肉在膨胀后收缩时,它自身碳纳米管的结构会进行重新排列,这时它就会产生一股小小的电流。并且这股电流是可以储存并加以利用的,例如给下一次肌肉运动扩张提供能量,或者贮存在电池里给类似于iPod的移动设备充电。“它可以将你输送给它的近70%的能量保存下来,”
值得一提的是,人造肌肉的服务对象不仅仅是人类本身。研究者介绍,人造肌肉还能成为机器人、飞机、海洋舰队等的助手。
由于
乙醇产生的能量系数比电池等常规能源高出30%,因此,人造肌肉可以安装在机器人身上充当“电池”。还可以用在假肢上,给假肢新的力量。
此外,人造肌肉还可以当作飞机和舰艇的“外衣”。人造肌肉是由
碳纳米管制造而成,“披”在运输工具外面,可以使它们运行起来阻力更小、更顺利。将来有一天,人造肌肉甚至能够替代金属制的
心脏起搏器,打造和人类身体更亲近的新一代“人造心脏”。
主要产品
超强人造肌肉
美国和
韩国研究者联手研究出一种超级仿生肌肉。这种肌肉不仅力量大得惊人,而且从来不会疲惫。这一发明可能最终用于消防队员、宇航员或战士,为各条战线打造力大无穷的“超人”队伍。
新的人工肌肉可以模仿
肌肉收缩产生力量。将
石蜡嵌入经过编织形成一种特殊结构的
碳纳米管纤维中,通过直接加热、电加热,或者使用一道闪光,石蜡就会发生体积膨胀,使整个“肌肉”膨胀。但由于碳纳米管纤维特殊的结构,“肌肉”的长度会同时发生收缩,就产生了力量。
随着通电和断电,肌肉丝扭曲和恢复所产生的扭力足以为微型弹射器提供动力,在实验室工作台上发射
金属箔片。研究人员决定建造一个弹射器来展示此项新发明的奥妙。
这种“肌肉”的举重能力是同等尺寸的天然肌肉的200倍,如果按重量相比,产生的扭力高于大型电动
发动机。但人工肌肉还不能完全吊起一架
钢琴,因为当前可行的生产技术限制了丝的重量。
制造材料
压电材料
自从1990年代中期以来,Bar-Cohen一直为经常变化的国际EAP研究人员团体充当非正式的协调人。回到该领域的萌芽时期,“我从科技论文上读到的电活化聚合物材料并不像广告吹嘘的那样神奇,”他一边回忆,一边狡黠地笑着,“而且当我从
美国航空航天局获得经费来研究该技术时,我不得不去了解谁在做这个领域的工作,以便从中找到某些启发。”仅在数年之内,Bar-Cohen就已掌握了足够的知识,并且协助举办了首届关于该主题的科技研讨会,开始出版一份EAP时事通讯,发布了一个EAP网站,还编写了两部关于这项新兴技术的论著。
在
喷气推进实验室(JPL)院内的一幢矮层研究建筑内,试验台上摆满了各种致动设备原型以及测试装置,Bar-Cohen开始回顾他 已经了如指掌的关于该领域的历史。他说:“很长一段时间内,人们一直在寻找不用电动马达就可以移动物体的方法,因为马达对于许多应用而言显得太过笨重。在EPAs出现之前,马达的标准替代技术是压电陶瓷,该技术曾一度是研究的热点。”
在压电材料中,机械
应力可导致
晶体电极化,而且反之亦然。用电流刺激这种材料将使其变形;通过改变其形状可以产生电。 Bar-Cohen从一张实验长椅上拿起一只浅灰色的小碟子,说:“这块碟子由PZT(锆
钛酸铅)制成。”他向我们解释:电流使得压电PZT产生收缩或者膨胀,幅度只有不到其总长度的百分之一。尽管变形量很小,但是却有用处。
在隔壁的一间屋子中,Bar-Cohen出示了由PZT碟子驱动的一英尺长的冲击钻,他正和JPL的同事以及Cybersonics公司的工程师们一起研制这些PZT碟子。他介绍说:“在这个圆筒内是一叠压电碟子,当被交流电激活时,这叠碟子将以超音速拍打钻头,钻头则以高速率上下跳跃,从而钻入坚硬的岩石。”在另一侧是几堆石块,石块已经被钻出很深的孔眼。
该钻子作为一个范例,说明了用压电陶瓷制作致动器的有效性,的确让人印象深刻。但是,在许多应用中,要求电活化材料的膨胀幅度超过百分之零点几。
高分子液晶是科学家们心目中的硅的理想替代物。过去,许多微观研发工作都是在硅材料的基础上进行的。而越来越多的科学家认为,高分子
LCP的柔韧性比硅好。对液晶聚合体进行精细剪裁加工后,加工出的样品对温度变化、紫外线照射等特定的外界刺激有相应的反应,也比硅的敏感程度高。而且液晶聚合物的制造成本比硅材料更低,加工工艺也更加简单。
相比起硅制的假肢,“人造肌肉”更显神奇。20世纪80年代,科学家们发现,在电流的作用下,高分子液晶材料的分子可以发生形变和扭曲,进而使材料本身产生收缩和弯曲——这非常类似于人类的肌肉,于是科学家们开始研究如何利用
有机高分子化合物液晶材料构造“人造肌肉”。传统的机器人除了关节之外,四肢不能自由活动,如果有了“人造肌肉”,则他们的四肢会更加灵活且发达。
尼龙丝材料
尼龙丝这种令人意料之外的功用,是在本周出版的美国《科学》杂志中公布的,而这项研究的参与者则是在美国德克萨斯州大学
达拉斯分校工作的巴西科学家们。
这项研究由Roy Baughman领导,他是在这项领域中对世界贡献最大的科学家之一。同时,另外两位科学家Mônica Jung de Andrade与Márcio Lima在美国相关机构攻读完博士后课程,也加盟了这项新研究。
研究显示,能够成为制作人造肌肉材料的最重要特征,就是此材料有能力在储存大量能量的同时以同样的方式保持肌肉的活性。
另一个重要的指标就是这个制作材料的可逆转性。因为研究显示,除非一种材料在经历几千次储存与释放能量的过程中完全不损失其性能,否则就无法保持其强大的收缩力以保持肌肉活性。
在攻克这一难关的过程中,科学家们其实已经使用了许多材料进行人造肌肉实验。科学家们起初使用
碳纳米管来进行人造肌肉实验,他们将该材料加热,并且像真正的肌肉一样举起重物,但是许多实验材料的实验结果却并不理想。
Márcio Lima向记者解释道,解开这个谜题的关键就是研究员们找到了某些纤维材料的热膨胀系数为负,这就相当于在加热材料和冷却材料的过程中,只要控制好与应用好材料温度的变化,就能够准确地在材料的运动过程中保持材料的可逆转性。
他说道:“我们发现将纤维拧在一起形成一个弹簧或者线圈的形状能够放大使用效果。之后我们又实验了许多更加便宜的纤维材料,也达到了很好的效果,尼龙丝就是其中一种。”
这种材料的最大好处就是在于价格便宜,因为这种尼龙丝每斤只需花费15雷亚尔。而且在实验中,这种尼龙丝所制作的人造肌肉,在100
摄氏度温度变化内的承重效果,比人体肌肉的性能要强84倍之多。
在未来,这种新型技术可能会应用于机器人制作、生物医学工程(例如制造承重性能强大的假肢等等),甚至在纺织行业也可以应用。例如,在炎热或寒冷的天气中,你可以打开或关闭衣服上用该尼龙丝科技制成的“气孔”,以达到调节温度的目的。
聚合物材料
SRI小组的领导者Ron Pelrine介绍说:“在与
日本签署微型机器计划(Japanese micro-machine program)合同之后,斯坦福研究院(SRI INTERNATIONAL)从1992年开始研究人造肌肉。”他从前是一名物理学家,转行做机械工程师。日本官方在寻找一种新型的微致动器技术。几位SRI研究人员开始寻找一种在力学、冲程(线性位移)以及应变(单位长度或单位面积的位移量)等方面的性质与自然肌肉类似的致动材料。
“我们考察了一大堆有希望的活化技术,”Pelrine回忆道。然而,他们最终选择了电致伸 缩聚合物,当时来自路特葛斯大学(Rutgers University)的Jerry Scheinbeim正在研究这种材料。这种聚合物中的碳氢分子以半
晶体点阵的方式排列,而这种晶阵具有类似压电的属性。
当处于
电场中时,所有的绝缘塑料(例如
聚亚安酯)将会沿电力线的方向收缩,同时沿垂直于电力线的方向膨胀。这种现象与电致伸缩不同,被称为麦克斯韦应力。Pelrine 说:“这种现象早就为人们所熟知,但一直被当作是一种很麻烦的效应。”
他意识到,比聚亚安酯更软的聚合物在
静电吸引作用下将更容易挤压,因而可以提供更大的机械应变。通过对软硅树脂进行试验,SRI的科学家很快证明其应变在10-15%之间,这十分合意。经过进一步研究,这个数字还可以提高到20-30%。为了区别这种新的致动器材料,硅树脂和其他较软的材料被命名为电绝缘橡胶(dielectric elastomers)(也被称为
电场活化聚合物)
在确定出几种有前途的材料之后,在1990年代剩余的大部分时间内,该小组将注意力集中于研制特定设备应用的具体细节。当时,该SRI研究小组新的外部经费支持和研究方向由美国国防高级研究计划局(DARPA)和海军研究中心(Office of Naval Research)提供,其主管的首要兴趣在于将该技术用于军事目的,包括小型侦察机器人以及轻型发电机。
由于橡胶开始表现出大得多的应变,工程师意识到电极也必须是可以膨胀的。普通金属电极无法伸长,除非将其割裂。Pelrine提到:“起先,人们不用为这个问题操心,因为他们研究的材料所提供的应变只有1%左右。”最后,该研究小组开发出一种基于在橡胶阵列(elastomeric matrix)中填充碳粒的屈从电极。他指出:“由于电极和塑料一起膨胀,它们可以在整个活动区域之间保持
电场。”SRI International为该概念申请了专利,它是后来人造肌肉技术的关键之一。
Pelrine急于向我们展示,他拿出一个15厘米见方看上去像相框的东西,其两面的塑料包夹由于膨胀而紧绷着。“看,这种聚合物材料延展性非常好,”他说,同时用一只手指按入其透明薄膜。“它实际上是一种双面胶带,一大卷的价格很便宜。”在中间夹片的两面是黑色、镍币大小的电极,连着导线。
Pelrine拧开电源的控制旋钮。立刻,黑色的圆形电极对开始膨胀,直径增加了四分之一。当他将旋钮拧回到原来位置时,电极马上又收缩至原状态。他咧嘴笑了笑,并且重复操作了好几次,解释说:“根本上,我们的设备就是电容,也就是两块平行的充电平板,中间夹着电绝缘材料。当电源接通时,正负电荷分别在相反的电极上积累。电极平板互相吸引并且挤压中间的绝缘聚合物,并且聚合物的面积扩大。”尽管已经确定出几种有前途的材料,要想在实际设备中实现可接受的性能的确是一个挑战。然而,该小组在1999年取得的一系列突破引起了美国政府及工业界相当的兴趣。
有人通过观察发现,在电活化聚合物材料之前预先拉伸它,将大大提高其性能。小组的另一位成员Roy Kornbluh工程师回忆说:“我们开始注意到存在一个甜区(sweet
小数点),这时可以获得最优性能。没有人确切地知道为什么,但是预拉伸聚合物可以使击穿强度【电极之间电流通路(passage of current)的阻力】增加100倍之多。”电活化应变提高的幅度与之类似。尽管原因还不是很清楚,SRI的化学家裴其冰(音)认为:“预拉伸可沿平面膨胀方向定位分子链,并且材料使得沿该方向更加坚硬。”为了获得预拉伸效果,SRI的致动器设备采用了一个外部支撑结构。
第二项关键发现得益于研究人员“测试我们所知道的每一种可伸展材料,我们称之为
托马斯·爱迪生方法,”Pelrine愉快地告诉我们。(为找到合适的电灯灯丝材料,托马斯·爱迪生系统地试验过各种材质。)“在我家里,为了不让我那刚会走路的孩子乱拿东西,我们用一把以聚合物材料做的门锁将冰箱锁住。孩子逐渐长大,我们不再需要锁什么东西,因此将锁拿走。由于它是用可伸展材料制成的,我决定测试一下它的应变属性。”
追溯锁的来源以及分析其组成不是什么难事,最后,这种神秘的聚合物“原来是
聚丙烯酸橡胶,它可以提供极大的应变和能量输出,线性应变达380%之多。这两项进展使得我们能够开始将电绝缘橡胶应用到现实的致动器设备中。”
SRI小组的通用研究方法比较灵活,包括许多种设计、甚至包括不同的聚合物。正如裴其冰所说:“这是一台设备,而不是一件材料。”据Pelrine称,该小组能够用不同的聚合物产生活化效应,包括丙烯酸树脂和硅树脂。甚至天然橡胶也能产生一定效应。例如,在外部空间的极端温度环境中,人造肌肉最好采用
有机硅化物塑料,已经证明这种材料可以在零下100
摄氏度的真空环境下工作。对于要求更大输出力的应用,可能需要更多的聚合物材料或者将多台设备串联或并联。
SRI成员von Guggenberg 估计:“由于可以买到电绝缘橡胶的现货,而且我们在每台设备至多只用到几平方英尺的材料,因此致动器将会非常便宜,尤其是对于批量生产。”
激活电绝缘橡胶致动器的电压相对较高,通常为1到5千伏,因此该设备可以在非常低的电流下运转(一般而言,高电压意味着低电流)。致动器还可以使用较细、不太贵的导线,并且可以保持相当冷却。Pelrine说:“在到达
电场中止以及电流流经(电极之间的)间隔的临界点时,更高的电压将产生更大的膨胀和
应力。”
\n# 应用领域
太空探索
20世纪80年代,科学家发现,非金属材料能在电流的作用下运动,于是开始构 想人造肌肉。作为人造肌肉的先驱者,
美国航空航天局的科学家约瑟夫·巴·考恩用自己的研究成果证明,通过电流刺激,可使高分子材料自动伸缩和弯曲,研制出具有与人类肌肉相同机能的人造肌肉。简单地说,人造肌肉由粘合性塑料材料制成,是把管状导电塑料集束成肌肉一样的复合体,在管内注入特殊液体,导电性高分子在溶液中释放出离子,在电流的刺激下完成伸缩动作。通过控制电流强弱调整离子的数量,可以有效改变人造肌肉的伸缩性。相反,通过改变复合体的形状也可以产生电。
人造肌肉具备人类肌肉的功能。在人造肌肉中,一根直径为0.25毫米的管状导电塑料可承重20克,相同的体积,人造肌肉比人体肌肉的力量强壮10倍。
当然,研制人造肌肉,并不是科学家的心血来潮,而是为了排除人类探索自然过程中的障碍。在探测
火星和其他星球的科学实验中,传统引擎驱动的机器人,除了关节之外,四肢没有任何可以活动的关联处,能量上自然是捉襟见肘。如果有了人造肌肉,四肢更加发达,能将分子能量的70%转化为物理能量,远远大于电动引擎的功率。一种名为Birod的生物机器人已问世,它可以负载超过自身1.7万倍的重量。Birod既不怕火星的沙尘石,还大大减轻了自身的重量。
军事科研
美国陆军希望通过“未来士兵装备”计划减轻士兵战斗负荷。
麻省理工学院就正在研制用于未来士兵装备的人造肌肉。人造肌肉一旦装入手套、制服和军靴里,士兵就会有超人的力量,举重物、跳过高墙不在话下。此外,利用人造肌肉可以发电的原理,士兵将不需要自己背
发电机,美国斯坦福研究员正在开发一种“脚后跟”发电机,即把人造肌肉材料安装在军靴的鞋跟上,通过步行、跑步等运动就能使其发电。科学家说,利用这一设备,一个普通个头的人每迈出一步就可以产生1瓦特的功率,把这种电能储存起来,随时可以给便携式电话等电器充电,非常适合在野外行动的士兵。
商业领域
如果把人造肌肉仅仅用于战争,那实在太令人遗憾了,可喜的是,未来,凡是需要小型电动引擎来驱动的制造产业,人造肌肉都有用武之地。
汽车制造商就对人造肌肉很感兴趣。一辆汽车通常需要50到100个驱动传动装置,如果这些装置改用人造肌肉作驱动力,不光可增强耐磨性,更能极大地提高功率。
科学研究
人造肌肉灵活柔软的特性还可以用来制造医用导管和在地震救灾中大显身手的蛇形 机器人。作为生物型机器人的尝试,
大阪的伊美克斯公司还利用人造肌肉研制成一种可以乱真的机器鱼。机器鱼长6.7厘米,在水中游动的姿态与真鱼没什么差别,更难得的是,它的“耐力”可保持半年时间。机器鱼的肚子里既没有装马达、机轴、
齿轮等机械装置,也没有电池,完全是靠伸缩自如的高分子材料自行驱动。
不管是在军事领域,还是在商业制造领域,人造肌肉都将发挥无可估量的作用。考恩教授说:“我们不需要什么齿轮,也不需要轴承,我们所需要的就是可以导电的高分子材料。这将改变机器人研究的蓝图。”
光学应用
人造肌肉是一种在
电场的作用下能够伸缩的塑料,在电视和电脑屏幕里,它可以产生 真正的逼真色彩。在未来10年内,以这些材料为基础制造的微小的“可调棱镜”,就会出现在改进型显示器上,充当起像素的角色。现有的显示设备,比如电视显像管、液晶显示屏或等离子显示器,都不能完全再现人类能看到的所有颜色。这些屏幕上的每个像素都由3个发光元件构成,每个元件发出三原色(
Fundamental color,即红、绿、蓝三色)中的一种。显示器将不同亮度的三种颜色混合在一起,就能产生其他的颜色,不过这种方式得到的颜色范围受到限制。
苏黎世联邦理工学院苏黎世分校的曼纽尔·阿什万登(Manuel Aschwanden)和安德里亚·施特默尔(Andreas Stemmer),研制出了一种给屏幕染色的新方法。他们采用了反射式衍射光栅组成的阵列。光栅是一种微小的光学元件,它们的表面布满一系列纤细、平行和等距的凹槽。这些凹槽可以像棱镜一样,把白光分解为缤纷的彩虹。阿什万登说:“拿起一张光盘,用底面斜对着阳光,你就能看到同样的效果:阳光在规则刻划的表面上,反射成了
七彩虹光。”
为了检验这种概念的可行性,两位研究者制造了一个包含10个像素的光栅阵列,每一个像素都是一个衍射光栅。阿什万登解释说,白光先照射到一个边长约75微米的光栅上。在光栅表面一层薄薄的聚合物膜上,浇铸着一条条间距1微米的凹槽。施加不同的电压,光栅就会膨胀或收缩,这样照射进来的光线遇到的凹槽就会时疏时密。这种效果改变了光线被反射回去的角度,因而使反射形成的七彩虹光的位置发生明显的偏移。在光栅的前面放上遮光板,只留出一个小孔,这个系统就能分离出特定的颜色,只让这种色彩透过小孔射出来。改变电压,使不同颜色的光对准小孔,系统就能显示不同的色彩。
为了在一个标准显示器上显示复合色,每一个像素将由两个或多个衍射光栅组成。这是必需的,因为一些颜色并不出现在白光分解而成的七彩虹光之中,比如棕色就是如此。
阿什万登说,虽然这个系统还太小,无法实际应用,但是它的像素密度却和一个高质量液晶显示器相同。他也坦然承认,他的发明要想应用到某种视频产品上,还有很长的路要走。他们制作的下一个
原型系统,将是一个拥有400个光栅的阵列。他们“显示器”的工作电压是300
伏特,比家庭用电的电压高很多,不过正在研制的新材料将会降低这个工作电压。美国
斯坦福大学的电子工程师、硅光机械公司(
硅 Light Machines)创始人之一、微光电子技术的开拓者奥拉夫·索尔高(Olav Solgaard)评论说:“这是彩色显像领域一个非常有趣的成果,不过要达到实用水平,它还需要面对非常严峻的技术挑战。”他列举了几个潜在的技术障碍,比如,为了取得良好的对比度,该如何产生所谓的“全黑像素”;再比如,考虑到光栅“丢弃了相当一部分光线”,又该如何有效地维持图像的亮度。对于被动显示器,也就是那些把周围的白光反射成图像的显示器来说,这项技术也许非常有用,它们可以被应用到手机上。