激素,希腊文原意为“奋起活动”,它是由正常机体某些组织产生,然后弥散入血,由
血液循环运输到机体其他组织,发挥特殊生理作用的一类化学物质,它通过调节各种组织
细胞的代谢活动来影响人体的生理活动。
分类
第一类为
类固醇,如
肾上腺皮质激素(皮质醇、醛固等)、性激素(雌激素、孕激素及雄激素等)。
第三类激素的结构为肽与
蛋白质,如
下丘脑激素、
垂体激素、胃肠激素、
胰岛素、
降钙素等。
发展历史
1853年,
法国的巴纳德研究了各种动物的胃液后,发现了肝脏具有多种不可思议的功能。贝尔纳认为含有一种物质来完成这种功能。可是他没有研究出这种物质,实际上那就是激素。
1880年,
德国的
威廉·奥斯特瓦尔德从
甲状腺中提出大量含有碘的物质,并确认这就是调节甲状腺功能的物质。后来才知道这也是一种激素。
1889年,巴纳德的学生西夸德发现了另一种激素的功能。他认为动物的
睾丸中一定含有活跃身体功能的物质,但一直未能找到。
1901年,在美国从事研究工作的日本人
高峰让吉从牛的副肾中提取出调节血压的物质,并做成
晶体,起名为
盐酸肾上腺素,这是世界上提取出的第一激素晶体。
1902年,
英国生理学家
恩斯特·斯他林和
贝利斯经过长期的观察研究,发现当食物进入
小肠时,由于食物在肠壁磨擦,小肠粘膜就会分泌出一种数量极少的物质进入血液,流送到
胰腺,胰腺接到后就立刻分泌出
胰液来。他们将这种物质提取出来,注入哺乳动物的血液中,发现即使动物不吃东西,也会立刻分泌出胰液来,于是他们给这种物质起名为“促胰液”。后来斯塔林和贝利斯给上述这类数量极少但有生理作用,可激起生物体内器官反应的物质起名为“激素”(荷尔蒙)。
自从出现激素一词后,新的激素又不断地被发现,人们对激素的认识还在不断地加深、扩大。
许多激素制剂及其人工合成的产物已广泛应用于临床治疗及农业生产。利用遗传工程的方法使细菌生产某些激素,如生长激素、
胰岛素等已经成为现实,并已广泛应用于临床上。
产生作用机制
许多激素制剂及其人工合成的产物应用于临床治疗及农业生产。利用遗传工程的方法使细菌生产某些激素,如生长激素、胰岛素等已经成为现实,并已广泛应用于临床上,成为治疗
糖尿病,侏儒症等的良药。
激素在人体内的量虽然不多,但是对健康却有很大的影响,缺乏或是过多引发各种疾病,例如:生长激素分泌过多就会引起
肢端肥大症,分泌过少就会造成
矮小症;而
甲状腺素分泌过多就会引发
心悸病、手汗等症状,分泌过少就易导致肥胖、嗜睡等;
胰岛素分泌不足就会导致糖尿病。许多激素制剂以及人工合成产物在医学上及畜牧业中有重要用途。
狭义
广义是指引起液体相互关联的物质,但狭义即一般是把动物体内的固定部位(一般在
内分泌腺内)产生的而不经导管直接分泌到
体液中,并输送到体内各处使某些特定组织活动发生一定变化的化学物质,总称激素。W.M.Bayliss和E.H.St- arling(1902年)根据他们发现的物质肠促胰液肽(secretin),而对具有这种作用的物质首先赋予了“激素”的这一名称和定义。即使极微量的激素也表现出其应有的作用,但它并不构成代谢
底物,而是起调节物质的作用。
其作用机制,在
甾类激素,经过激素和
细胞质内受体的复合体与
染色质结合,引起
转录的活化,开始合成新的mRNA,进而合成酶蛋白、结构蛋白或调节蛋白。结果认为在
细胞中出现了激素的这种作用。在肽类激素,认为与细胞膜直接反应,在细胞内通过cAMP发挥激素作用。如把
脊椎动物的激素进行
化学的分类,则可分成
蛋白质、
多肽系统(
胰岛素、
胰高血糖素、脑下垂体的各种激素、
甲状旁腺激素),酚
衍生物系统(
盐酸肾上腺素、
甲状腺激素),甾类化合物系统(
生殖腺激素,
肾上腺皮质激素)。昆虫前
胸腺激素的蜕皮素属甾类化合物系统,而咽侧体的
保幼激素是链状碳氢化合物。此外,从
海星纲的放射神经中抽出的海星生殖巢刺激物质是核苷酸。不论来源是细胞、组织或
腺体,凡具有特殊生理作用的内分泌物,全部都称为(广义的)激素,不论是由细胞分泌的
植物激素,或由不固定的非腺性组织分泌的创伤激素,在一切组织中普遍产生的副激素,个体分泌到体外可在个体之间发挥作用的
费洛蒙指数等,都可以归入激素和其他范畴。另一方面,特定的神经细胞形成和分泌的神经性脑下垂体激素等神经分泌物质,则可归入狭义的激素中,而
乙酰胆碱、去甲
盐酸肾上腺素等
化学传递物质通常不归入狭义的激素中。由于
控制论的应用等,把激素作为个体内
细胞间的信息传递物质的想法也增强了。
产生
激素是内分泌细胞制造的。
人体内分泌细胞有群居和散住两种。
群居的形成了
内分泌腺,如脑壳里的脑垂体,脖子前面的
甲状腺、
甲状旁腺,肚子里的
肾上腺、胰岛、
卵巢及
阴囊里的
睾丸。
散住的如胃肠粘膜中有胃肠激素细胞,
下丘脑分泌肽类激素细胞等。
每一个内分泌细胞都是制造激素的小作坊。
大量内分泌细胞制造的激素集中起来,便成为不可小看的力量。
种类激素是化学物质。对各种激素的
化学结构基本都搞清楚了。激素是调节机体正常活动的重要物质。它们中的任何一种都不能在体内发动一个新的代谢过程。它们也不直接参与物质或能量的转换,只是直接或间接地促进或减慢体内原有的代谢过程。如生长和发育都是人体原有的代谢过程,生长激素或其他相关激素增加,可加快这一进程,减少则使生长发育迟缓。激素对人类的繁殖、生长、发育、各种其他生理功能、行为变化以及适应内外环境等,都能发挥重要的调节作用。一旦激素分泌失衡,便会带来疾病。激素只对一定的组织或
细胞(称为靶组织或靶细胞)发挥特有的作用。人体的每一种组织、细胞,都可成为这种或那种激素的靶组织或靶细胞。而每一种激素,又可以选择一种或几种组织、细胞作为本激素的靶组织或靶细胞。如生长激素可以在骨骼、肌肉、
结缔组织和内脏上发挥特有作用,使人体长得高大粗壮。但肌肉也充当了雄激素、
甲状腺素的靶组织。激素的生理作用虽然非常复杂,但是可以归纳为五个方面:第一,通过调节
蛋白质、糖和脂肪等三大营养物质和水、盐等代谢,为生命活动供给能量,维持代谢的
动态平衡。第二,促进
细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育,以及细胞的更新与衰老。例如生长激素、
甲状腺素、性激素等都是促进生长发育的激素。第三,促进生殖器官的发育成熟、生殖功能,以及性激素的分泌和调节,包括生卵、排卵、生精、
受精卵、
着床、妊娠及泌乳等一系列生殖过程。第四,影响
中枢神经系统和植物性神经系统的发育及其活动,与学习、记忆及行为的关系。第五,与
神经系统密切配合调节机体对环境的适应。上述五方面的作用很难截然分开,而且不论哪一种作用,激素只是起着信使作用,传递某些生理过程的信息,对生理过程起着加速或减慢的作用,不能引起任何新的生理活动。
一般特征
①信息传递作用;
②相对特异性;
④相互作用。
作用及特点
作用
① 调节三大物质代谢和水盐代谢;
② 促进生长、发育,影响衰老;
③ 影响CNS及生育(生殖器官的发育与成熟);
④ 使机体更好地适应环境。
特点
1、高度专一性包括组织专一性和效应专一性。前者指激素作用于特定的靶细胞、靶组织、靶器官。后者指激素有选择地调节某一代谢过程的特定环节。例如,
胰高血糖素、肾上腺素、
糖皮质激素都有升高血糖的作用,但胰高血糖素主要作用于肝细胞,通过促进
肝糖原分解和加强糖异生作用,直接向血液输送葡萄糖;肾上腺素主要作用于骨骼肌细胞,促进肌糖原分解,间接补充血糖;糖皮质激素则主要通过刺激骨骼肌细胞,使蛋白质和氨基酸分解,以及促进肝细胞糖异生作用来补充血糖。激素的作用是从激素与受体结合开始的。靶细胞介导激素调节效应的专一性激素结合蛋白,称为
激素受体。受体一般是糖蛋白,有些分布在靶细胞质膜表面,称为细胞表面受体;有些分布在细胞内部,称为
细胞内受体,如
甲状腺素受体。
2、极高的效率激素与受体有很高的亲和力,因而激素可在极低浓度水平与受体结合,引起调节效应。激素在血液中的浓度很低,一般
蛋白质激素的浓度为10-10-10-12mol/L,其他激素在10-6-10-9mol/L。而且激素是通过调节酶量与酶活发挥作用的,可以放大调节信号。激素效应的强度与激素和受体的复合物数量有关,所以保持适当的激素水平和受体数量是维持机体正常功能的必要条件。例如,
胰岛素分泌不足或胰岛素受体缺乏,都可引起
糖尿病。
3、多层次调控内分泌的调控是多层次的。
下丘脑是
内分泌系统的最高中枢,它通过分泌神经激素,即各种释放因子(RF)或释放抑制因子(RIF)来支配
垂体的激素分泌,垂体又通过释放
促激素控制
甲状腺、
肾上腺皮质、性腺、胰岛等的激素分泌。相关层次间是施控与受控的关系,但受控者也可以通过反馈机制反作用于施控者。如下丘脑分泌促
甲状腺素释放因子(TRF),刺激垂体前叶分泌促甲状腺素(TSH),使甲状腺分泌甲状腺素。当血液中甲状腺素浓度升高到一定水平时,甲状腺素也可反馈抑制TRF和TSH的分泌。激素的作用不是孤立的。
内分泌系统不仅有上下级之间控制与反馈的关系,在同一层次间往往是多种激素相互关联地发挥调节作用。激素之间的相互作用,有协同,也有拮抗。例如,在血糖调节中,
胰高血糖素等使血糖升高,而
胰岛素则使血糖下降。他们之间相互作用,使血糖稳定在正常水平。对某一生理过程实施正反调控的两类激素,保持着某种平衡,一旦被打破,将导致内分泌疾病。激素的合成与分泌是由
神经系统统一调控的。
4、信使性。激素只是充当“信使”(messenger)启动靶
细胞固有的、内在的一系列生物效应,而不作为某种反应成分直接参与细胞物质与能量代谢的环节。因为早就发现,激素与酶不一样,只对完整细胞起作用。激素作为“第一信使”与靶细胞受体结合后,在通过细胞内的”第二信使“激发与细胞固有反应相联系的一种或多种信号转到途径,调节原有的生理生化过程,加强或减弱细胞的生物效应和生理功能。在发挥作用过程中,激素对其所作用的细胞,既不提供额外能量,也不添加新功能,而只是在体内细胞之间传递生物信息。
传递方式
主要有:
①远距分泌,激素释放后直接进入
毛细血管,经
血液循环运送到远距离的靶器官;
②
旁分泌,激素释放后进入
内环境,通过扩散到达邻近的靶细胞;
③神经分泌,神经细胞合成的激素沿轴浆流动运送到所连接的组织,或从
神经末梢释放入毛细血管,由血液运送至靶细胞;
④自分泌,激素被分泌入细胞外液后,又作用于分泌细胞自身。
激素代谢
激素的合成、贮存、释放、运输以及在体内的代谢过程,有许多类似的地方,但这部分内容大多数属于
生物化学范畴,本章仅就和
生理学密切有关的方面简述如下:
合成和贮存
不同结构的激素,其合成途径也不同。肽类激素一般是在分泌细胞内
核糖体上通过翻译过程合成的,与
蛋白质合成过程基本相似,合成后储存在胞内
高尔基体的小颗粒内,在适宜的条件下释放出来。胺类激素与
类固醇类激素是在分泌细胞内主要通过一系列特有的
酶促反应而合成的。前一类
底物是氨基酸,后一类是胆固醇。如果内分泌
细胞本身的功能下降或缺少某种特有的酶,都会减少激素合成,称为某种
内分泌腺功能低下;内分泌细胞功能过分活跃,激素合成增加,分泌也增加,称为某内分泌腺功能亢进。两者都属于非生理状态。
各种内分泌腺或细胞贮存激素的量可有不同,除
甲状腺贮存激素量较大外,其他内分泌腺的激素贮存量都较少,合成后即释放入血液(分泌),所以在适宜的刺激下,一般依靠加速合成以供需要。
激素的分泌及其调节
激素的分泌有一定的规律,既受机体内部的调节,又受外界环境信息的影响。激素分泌量的多少,对机体的功能有着重要的影响。
1、激素分泌的周期性和阶段性由于机体对
地球物理学环境周期性变化以及对社会生活环境长期适应的结果,使激素的分泌产生了明显的时间节律,血中激素浓度也就呈现了以日、月、或年为周期的波动。这种周期性波动与其它刺激引起的波动毫无关系,可能受中枢神经的“
生物钟”控制。
2、激素在血液中的形式及浓度 激素分泌入血液后,部分以游离形式随血液运转,另一部分则与
蛋白质结合,是一种可逆性过程。即游离型+结合蛋白结合型,但只有游离型才具有生物活性。不同的激素结合不同的蛋白,结合比例也不同。结合型激素在肝脏代谢与由肾脏排出的过程比游离型长,这样可以延长激素的作用时间。因此,可以把结合型看作是激素在血中的临时储蓄库。激素在血液中的浓度也是
内分泌腺功能活动态的一种指标,它保持着相对稳定。如果激素在血液中的浓度过高,往往表示分泌此激素的内分泌腺或组织功能亢进;过低,则表示功能低下或不足。
3、激素分泌的调节已如前述激素分泌的适量是维持机体正常功能的一个重要因素,故机体在接受信息后,相应的内分泌腺是否能及时分泌或停止分泌。这就要机体的调节,使激素的分泌能保证机体的需要;又不至过多而对机体有损害。引起各种激素分泌的刺激可以多种多样,涉及的方面也很多,有相似的方面,也有不同的方面,但是在调节的机制方面有许多共同的特点,简述如下。
当一个信息引起某一激素开始分泌时,往往调整或停止其分泌的信息也反馈回来。即分泌激素的内分泌
细胞随时收到靶细胞及血中该激素浓度的信息,或使其分泌减少(
负反馈),或使其分泌再增加(正反馈),常常以负反馈效应为常见。最简单的
反馈回路存在于
内分泌腺与
体液成分之间,如血中葡萄糖浓度增加可以促进
胰岛素分泌,使血糖浓度下降;血糖浓度下降后,则对胰岛分泌胰岛素的作用减弱,胰岛素分泌减少,这样就保证了血中葡萄糖浓度的相对稳定。又如
下丘脑分泌的调节肽可促进腺
垂体分泌
促激素,而促激素又促进相应的靶腺分泌激素以供机体的需要。当这种激素在血中达到一定浓度后,能反馈性的抑制腺垂体、或下丘脑的分泌,这样就构成了下丘脑——腺垂体——靶腺功能轴,形成一个闭合回路,这种调节称闭环调节,按照调节距离的长短,又可分长反馈、短反馈和超短反馈。要指出的是,在某些情况下,后一级内分泌
细胞分泌的激素也可促进前一级
腺体的分泌,呈正反馈效应,但较为少见。
在闭合回路的基础上,
中枢神经系统可接受外环境中的各种
应激性及光、温度等刺激,再通过
下丘脑把
内分泌系统与外环境联系起来形成开口环路,促进各级
内分泌腺分泌,使机体能更好地适应于外环境。此时闭合环路暂时失效。这种调节称为开环调节。
激素的代谢
激素从分泌入血,经过代谢到消失(或消失生物活性)所经历的时间长短不同。为表示激素的更新速度,一般采用激素活性在血中消失一半的时间,称为半衰期,作为衡量指标。有的激素半衰期仅几秒;有的则可长达几天。半衰期必须与作用速度及作用持续时间相区别。激素作用的速度取决于它作用的方式;作用持续时间则取决于激素的分泌是否继续。激素的消失方式可以是被血液稀释、由组织摄取、代谢灭活后经肝与肾,随尿、粪排出体外。
作用机制
激素在血中的浓度极低,这样微小的数量能够产生非常重要的生理作用,其先决条件是激素能被靶细胞的相关受体识别与结合,再产生一系列过程。含氮类激素与
类固醇的作用机制不同,现简述如下:
含氮类激素
它作为第一信使,与靶细胞膜上相应的专一受体结合,这一结合随即激活细胞膜上的腺酸环化酶系统,在Mg2+存在的条件下,ATP转变为cAMP。cAMP为第二信使。信息由第一信使传递给第二信使。cAMP使胞内无活性的
蛋白激酶转为有活性,从而激活磷酸化酶,引起靶细胞固有的、内在的反应:如腺细胞分泌、
肌细胞收缩与舒张、神经细胞出现
电势变化、细胞通透性改变、
细胞分裂与分化以及各种酶反应等等。自cAMP第二信使学说提出后,人们发现有的多肽激素并不使cAMP增加,而是降低cAMP合成。新近的研究表明,在细胞膜还有另一种叫做GTP结合蛋白,简称G蛋白,而G蛋白又可分为若干种。G蛋白有α、β、γ三个亚单位。当激素与受体接触时,活化的受体便与G蛋白的α亚单位结合而与β、γ分离,对
腺苷酸环化酶起激活或抑制作用。起激活作用的叫兴奋性G蛋白(Gs);起抑制作用的叫抑制性G蛋白(Gi)。
G蛋白与腺苷酸环化酶作用后, G蛋白中的GTP酶使GTP水解为GDP而失去活性,G蛋白的β、γ亚单位从新与α亚单位结合,进入另一次循环。腺苷酸环化酶被Gs激活时cAMP增加;当它被Gi抑制时,cAMP减少。要指出的是cAMP与生物效应的关系不经常一致,故关于cAMP是否是唯一的第二信使尚有不同的看法,有待进一步研究。关于细胞内
磷脂酰肌醇可能是第二信使的学说受到重视。这个学说的中心内容是:在激素的作用下,在
磷脂酶C的
催化下使细胞膜的磷脂肌醇→三磷肌醇+
甘油二酯。二者通过各自的机制使
细胞内Ca2+浓度升高,增加的Ca2+与
钙调蛋白结合,激发细胞生物反应的作用。
这类激素是分子量较小的
脂溶性物质,可以透过细胞膜进入细胞内,在细胞内与胞浆受体结合,形成激素胞浆受体
配位化合物,复合物通过变构就能透过
核膜,再与核内受体相互结合,转变为激素-
核受体复合物,促进或抑制特异的
核糖核酸合成,再诱导或减少新
蛋白质的合成。
激素还有其他作用方式。此外,还有一些激素对靶细胞无明显的效应,但可能使其它激素的效应大为增强,这种作用被称为“允许作用”。例如
肾上腺皮质激素对血管平滑肌无明显的作用,却能增强去甲肾上腺素的升血压作用。
含激素的外用药膏
皮炎平、皮康霜、恩肤霜、复方酮康唑霜、复方酮纳乐霜、去炎松软膏、乐肤液、皮康王、
莫米松、优卓尔、适确得、复方适确得、
丙酸氯倍他索、索康、喜乐等。
含激素的滴眼液
地塞米松磷酸钠、
可的松、强的松、的确当、百力特、点必舒、艾龙(氟美瞳)。
激素类药物强弱表
临床应用
严重感染
如中毒性
细菌性痢疾、
伤寒败血症、暴发型
流行性脑膜炎、
休克型肺炎等作用辅助治疗。须和足量抗菌药合用.
治疗炎症及防止炎症后遗症
1)眼科局部用于虹膜炎、
角膜炎(眼前部炎症),全身用于
视网膜炎、
视神经炎(眼后部炎症),可减轻炎症,抑制增生、粘连和
瘢痕形成;
2)可减少
结核性脑膜炎、
结核性腹膜炎等渗出,防止组织过度破坏,抑制粘连及疤痕形成。
3)早期用于
心包炎、
睾丸炎、损伤性
关节炎、烧伤等,可减轻炎症,防止粘连及疤痕的后遗症。
抗休克
用于变态反应性疾病
过敏性疾病如支气管哮喘、过敏性休克、
过敏性鼻炎、剥脱性皮炎、
血管性水肿、
血清病、严重输血反应、过敏性皮炎、
药疹、顽固性
荨麻疹、湿疹等。自身免疫性疾病如
红斑狼疮、风湿性关节炎、
类风湿性关节炎、
皮肌炎、
风湿性心肌炎、硬皮病、肾病综合症、
慢性活动性肝炎、溃疡性结肠炎、自身免疫性
溶血性贫血、
特发性血小板减少性紫癜、
天疱疮、
重症肌无力、
风湿热等。组织器官移植排斥反应。
治疗血液病
替代疗法
适用于治疗
垂体前叶功能减退症、肾上腺皮质功能不全症(包括肾上腺危象和阿狄森病)及肾上腺切除。
局部应用
治疗皮肤病如
接触性皮炎、
湿疹、
肛门瘙痒症、牛皮癣等均有疗效。
副作用及防治
并发或加重感染
多见于体质较弱者。通常使用强的松超过20mg/日,就有增加感染的可能。常见的
病原菌包括细菌、病毒(水痘带状疮疹)、真菌及原虫(疟疾、阿米巴)等。一旦有感染的迹象,应及时选用强有力的抗生素加以控制。要注意,在并发感染时勿骤减激素,待病情控制后才能逐步减量,以防发生
肾上腺皮质功能不足。
药源性肾上腺皮质亢进症
如
向心性肥胖、满月脸、
痤疮、多毛、乏力、易感染、
低钾血症、浮肿、
高血压、血糖升高、糖尿等。其中有些危害较大且常见者,应予对症处理,如浮肿者可用利尿剂,高血压明显者应予降压治疗,低钾血症者可适当补充
钾盐等。血糖增高或糖尿者,如无发生
糖尿病酮症酸中毒,通常不需停用激素,可根据病情控制饮食或注射
胰岛素。
骨质疏松主要见于长期大剂量使用激素患者。据统计,接受强的松总剂量\u003e1000mg,约80%患者可出现骨质疏松症,特别是绝经期妇女和小儿更为多见。所以,对长期使用激素者,应常规补钙或
维生素D。
大剂量长疗程使用GC时,较易导致胃粘膜损伤,诱发溃疡,对原有溃疡者,可致穿孔,出血,后果严重,应及早防治,可在服用激素的同时加服胃粘膜保护剂。对原有溃疡者,应在病情控制后才能使用激素。
据统计,接受大剂量激素治疗者,约5%的患者于1个月至数年内发生无菌性骨坏死,最多见于
股骨头部,其次是、肩、膝、
腕骨等处。骨坏死早期常不易被发现,因此对使用大剂量长疗程患者应定期作骨
核素扫描或X线摄片检查,以便早发现早治疗。
抑制生长发育
见于小儿长期应用激素者,因激素有对抗生长激素之作用,并引起
蛋白质负平衡。
神经精神症状
可引起激动、失眠,个别可诱发精神病,可适当使用安定等镇静药。
其它
长期应用激素还可诱发
白内障、
青光眼、伤口愈合不良、血栓形成和栓塞、
月经失调、多汗、
高脂血症、肌病等, 可予相应的对症治疗。
使用及害处
激素的使用
激素可以减少患者的病痛,在短时间内可以缓解病情,但有可能使患者上瘾,对激素产生依赖性,所以有很多人称激素为魔鬼。但是激素可以在病痛初发期发生有效的作用。鉴于此种情形,患者应该仔细权衡用或不用。
生理学意义
内分泌
细胞产生的一类具有高效能信息传递作用的化学物质。激素的种类较多而数量极微(多数为毫微克甚至微微克水平),它既非机体的能量来源又非组成机体的结构物质,但通过传递信息,在协调
新陈代谢、生长发育等生理过程方面充当了重要的角色,无怪乎科学家们称之为“第一信使”。激素的传递方式主要有三种:大多数激素分泌后直接进入血液,随
血液循环到达一定的组织细胞才发挥作用,这种细胞叫靶细胞,靶细胞上有具特殊立体构型的物质(
激素受体)与相应的激素结合,并识别激素所携带的信息,把它转化为细胞内一系列复杂的化学反应,从而产生特定的生理效应。这种方式的激素要随血流到达靶细胞,所以叫“远距分泌”。有些激素分泌出来以后通过
细胞间隙液就近扩散,作用于邻近细胞(如某些
消化道激素),这种方式叫“
旁分泌”。还有一些激素是由神经细胞(如
下丘脑)分泌的,叫“神经激素”,沿轴突借轴浆流动而到达靶细胞,这种方式叫“神经分泌”。激素按其
化学本质可分为含氮的蛋白类激素(由氨基酸、肽、蛋白衍生而成)和
类固醇类激素两大类;而就其生理功能来说可分为三大类:一类是调控机体
新陈代谢和维持
内环境相对稳定的,如
胰岛素、胃肠激素、
甲状旁腺激素等;一类是促进
细胞增殖分化,控制机体生长发育和生殖机能,并影响其衰老过程的,如生长激素、性激素等;还有一类与
神经系统密切配合,增强机体对环境的适应,如
肾上腺皮质激素和
垂体激素等。激素分泌量过多或过少都会引起机体功能的紊乱,所以临床上常以激素水平的测定做为诊断某些疾病的依据,并将许多激素做为治疗药物应用于临床。近年来,已成功地应用遗传工程的原理使微生物生产出人的激素,如通过
大肠杆菌生产出
胰岛素等激素,为激素在医药和工、农、牧业上的应用开拓了广阔的前景。
参考资料
Warning: Invalid argument supplied for foreach() in
/www/wwwroot/newbaike1.com/id.php on line
362